MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decrmanc Structured version   Visualization version   GIF version

Theorem decrmanc 11404
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a 𝐴 ∈ ℕ0
decrmanc.b 𝐵 ∈ ℕ0
decrmanc.n 𝑁 ∈ ℕ0
decrmanc.m 𝑀 = 𝐴𝐵
decrmanc.p 𝑃 ∈ ℕ0
decrmanc.e (𝐴 · 𝑃) = 𝐸
decrmanc.f ((𝐵 · 𝑃) + 𝑁) = 𝐹
Assertion
Ref Expression
decrmanc ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decrmanc
StepHypRef Expression
1 decrmanc.a . 2 𝐴 ∈ ℕ0
2 decrmanc.b . 2 𝐵 ∈ ℕ0
3 0nn0 11150 . 2 0 ∈ ℕ0
4 decrmanc.n . 2 𝑁 ∈ ℕ0
5 decrmanc.m . 2 𝑀 = 𝐴𝐵
64dec0h 11350 . 2 𝑁 = 0𝑁
7 decrmanc.p . 2 𝑃 ∈ ℕ0
81, 7nn0mulcli 11174 . . . . 5 (𝐴 · 𝑃) ∈ ℕ0
98nn0cni 11147 . . . 4 (𝐴 · 𝑃) ∈ ℂ
109addid1i 10070 . . 3 ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃)
11 decrmanc.e . . 3 (𝐴 · 𝑃) = 𝐸
1210, 11eqtri 2627 . 2 ((𝐴 · 𝑃) + 0) = 𝐸
13 decrmanc.f . 2 ((𝐵 · 𝑃) + 𝑁) = 𝐹
141, 2, 3, 4, 5, 6, 7, 12, 13decma 11392 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1975  (class class class)co 6523  0cc0 9788   + caddc 9791   · cmul 9793  0cn0 11135  cdc 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-om 6931  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-ltxr 9931  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-dec 11322
This theorem is referenced by:  37prm  15608  2503lem1  15624  4001lem1  15628  4001lem2  15629  4001lem3  15630  log2ub  24389
  Copyright terms: Public domain W3C validator