Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dedhb Structured version   Visualization version   GIF version

Theorem dedhb 3409
 Description: A deduction theorem for converting the inference ⊢ Ⅎ𝑥𝐴 => ⊢ 𝜑 into a closed theorem. Use nfa1 2068 and nfab 2798 to eliminate the hypothesis of the substitution instance 𝜓 of the inference. For converting the inference form into a deduction form, abidnf 3408 is useful. (Contributed by NM, 8-Dec-2006.)
Hypotheses
Ref Expression
dedhb.1 (𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))
dedhb.2 𝜓
Assertion
Ref Expression
dedhb (𝑥𝐴𝜑)
Distinct variable groups:   𝑥,𝑧   𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝜓(𝑥,𝑧)   𝐴(𝑥)

Proof of Theorem dedhb
StepHypRef Expression
1 dedhb.2 . 2 𝜓
2 abidnf 3408 . . . 4 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
32eqcomd 2657 . . 3 (𝑥𝐴𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴})
4 dedhb.1 . . 3 (𝐴 = {𝑧 ∣ ∀𝑥 𝑧𝐴} → (𝜑𝜓))
53, 4syl 17 . 2 (𝑥𝐴 → (𝜑𝜓))
61, 5mpbiri 248 1 (𝑥𝐴𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1521   = wceq 1523   ∈ wcel 2030  {cab 2637  Ⅎwnfc 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator