Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dedths2 Structured version   Visualization version   GIF version

Theorem dedths2 33067
Description: Generalization of dedths 33064 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
Hypothesis
Ref Expression
dedths2.1 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓
Assertion
Ref Expression
dedths2 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)

Proof of Theorem dedths2
StepHypRef Expression
1 dfsbcq 3398 . 2 (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜓[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓))
2 dedths2.1 . 2 [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓
31, 2dedth 4083 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsbc 3396  ifcif 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2591  df-cleq 2597  df-clel 2600  df-sbc 3397  df-if 4031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator