MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1add Structured version   Visualization version   GIF version

Theorem deg1add 24691
Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = ( deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1addle.b 𝐵 = (Base‘𝑌)
deg1addle.p + = (+g𝑌)
deg1addle.f (𝜑𝐹𝐵)
deg1addle.g (𝜑𝐺𝐵)
deg1add.l (𝜑 → (𝐷𝐺) < (𝐷𝐹))
Assertion
Ref Expression
deg1add (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))

Proof of Theorem deg1add
StepHypRef Expression
1 deg1addle.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1addle.y . . . . . 6 𝑌 = (Poly1𝑅)
32ply1ring 20410 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑌 ∈ Ring)
5 deg1addle.f . . . 4 (𝜑𝐹𝐵)
6 deg1addle.g . . . 4 (𝜑𝐺𝐵)
7 deg1addle.b . . . . 5 𝐵 = (Base‘𝑌)
8 deg1addle.p . . . . 5 + = (+g𝑌)
97, 8ringacl 19322 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 + 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1367 . . 3 (𝜑 → (𝐹 + 𝐺) ∈ 𝐵)
11 deg1addle.d . . . 4 𝐷 = ( deg1𝑅)
1211, 2, 7deg1xrcl 24670 . . 3 ((𝐹 + 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ∈ ℝ*)
1411, 2, 7deg1xrcl 24670 . . 3 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
155, 14syl 17 . 2 (𝜑 → (𝐷𝐹) ∈ ℝ*)
162, 11, 1, 7, 8, 5, 6deg1addle 24689 . . 3 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
17 deg1add.l . . . . 5 (𝜑 → (𝐷𝐺) < (𝐷𝐹))
1811, 2, 7deg1xrcl 24670 . . . . . . 7 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
196, 18syl 17 . . . . . 6 (𝜑 → (𝐷𝐺) ∈ ℝ*)
20 xrltnle 10702 . . . . . 6 (((𝐷𝐺) ∈ ℝ* ∧ (𝐷𝐹) ∈ ℝ*) → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2119, 15, 20syl2anc 586 . . . . 5 (𝜑 → ((𝐷𝐺) < (𝐷𝐹) ↔ ¬ (𝐷𝐹) ≤ (𝐷𝐺)))
2217, 21mpbid 234 . . . 4 (𝜑 → ¬ (𝐷𝐹) ≤ (𝐷𝐺))
2322iffalsed 4477 . . 3 (𝜑 → if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)) = (𝐷𝐹))
2416, 23breqtrd 5084 . 2 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ (𝐷𝐹))
25 nltmnf 12518 . . . . . 6 ((𝐷𝐺) ∈ ℝ* → ¬ (𝐷𝐺) < -∞)
2619, 25syl 17 . . . . 5 (𝜑 → ¬ (𝐷𝐺) < -∞)
2717adantr 483 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < (𝐷𝐹))
28 fveq2 6664 . . . . . . . . 9 (𝐹 = (0g𝑌) → (𝐷𝐹) = (𝐷‘(0g𝑌)))
29 eqid 2821 . . . . . . . . . . 11 (0g𝑌) = (0g𝑌)
3011, 2, 29deg1z 24675 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝐷‘(0g𝑌)) = -∞)
311, 30syl 17 . . . . . . . . 9 (𝜑 → (𝐷‘(0g𝑌)) = -∞)
3228, 31sylan9eqr 2878 . . . . . . . 8 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐹) = -∞)
3327, 32breqtrd 5084 . . . . . . 7 ((𝜑𝐹 = (0g𝑌)) → (𝐷𝐺) < -∞)
3433ex 415 . . . . . 6 (𝜑 → (𝐹 = (0g𝑌) → (𝐷𝐺) < -∞))
3534necon3bd 3030 . . . . 5 (𝜑 → (¬ (𝐷𝐺) < -∞ → 𝐹 ≠ (0g𝑌)))
3626, 35mpd 15 . . . 4 (𝜑𝐹 ≠ (0g𝑌))
3711, 2, 29, 7deg1nn0cl 24676 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → (𝐷𝐹) ∈ ℕ0)
381, 5, 36, 37syl3anc 1367 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
39 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
402, 7, 8, 39coe1addfv 20427 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ (𝐷𝐹) ∈ ℕ0) → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
411, 5, 6, 38, 40syl31anc 1369 . . . . 5 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))))
42 eqid 2821 . . . . . . . 8 (0g𝑅) = (0g𝑅)
43 eqid 2821 . . . . . . . 8 (coe1𝐺) = (coe1𝐺)
4411, 2, 7, 42, 43deg1lt 24685 . . . . . . 7 ((𝐺𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ (𝐷𝐺) < (𝐷𝐹)) → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
456, 38, 17, 44syl3anc 1367 . . . . . 6 (𝜑 → ((coe1𝐺)‘(𝐷𝐹)) = (0g𝑅))
4645oveq2d 7166 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)((coe1𝐺)‘(𝐷𝐹))) = (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)))
47 ringgrp 19296 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
481, 47syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
49 eqid 2821 . . . . . . . . 9 (coe1𝐹) = (coe1𝐹)
50 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
5149, 7, 2, 50coe1f 20373 . . . . . . . 8 (𝐹𝐵 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
525, 51syl 17 . . . . . . 7 (𝜑 → (coe1𝐹):ℕ0⟶(Base‘𝑅))
5352, 38ffvelrnd 6846 . . . . . 6 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅))
5450, 39, 42grprid 18128 . . . . . 6 ((𝑅 ∈ Grp ∧ ((coe1𝐹)‘(𝐷𝐹)) ∈ (Base‘𝑅)) → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5548, 53, 54syl2anc 586 . . . . 5 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(+g𝑅)(0g𝑅)) = ((coe1𝐹)‘(𝐷𝐹)))
5641, 46, 553eqtrd 2860 . . . 4 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) = ((coe1𝐹)‘(𝐷𝐹)))
5711, 2, 29, 7, 42, 49deg1ldg 24680 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹 ≠ (0g𝑌)) → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
581, 5, 36, 57syl3anc 1367 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ≠ (0g𝑅))
5956, 58eqnetrd 3083 . . 3 (𝜑 → ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅))
60 eqid 2821 . . . 4 (coe1‘(𝐹 + 𝐺)) = (coe1‘(𝐹 + 𝐺))
6111, 2, 7, 42, 60deg1ge 24686 . . 3 (((𝐹 + 𝐺) ∈ 𝐵 ∧ (𝐷𝐹) ∈ ℕ0 ∧ ((coe1‘(𝐹 + 𝐺))‘(𝐷𝐹)) ≠ (0g𝑅)) → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6210, 38, 59, 61syl3anc 1367 . 2 (𝜑 → (𝐷𝐹) ≤ (𝐷‘(𝐹 + 𝐺)))
6313, 15, 24, 62xrletrid 12542 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) = (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  ifcif 4466   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670  0cn0 11891  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Grpcgrp 18097  Ringcrg 19291  Poly1cpl1 20339  coe1cco1 20340   deg1 cdg1 24642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-psr 20130  df-mpl 20132  df-opsr 20134  df-psr1 20342  df-ply1 20344  df-coe1 20345  df-cnfld 20540  df-mdeg 24643  df-deg1 24644
This theorem is referenced by:  deg1sub  24696
  Copyright terms: Public domain W3C validator