![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1fval | Structured version Visualization version GIF version |
Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
deg1fval.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
Ref | Expression |
---|---|
deg1fval | ⊢ 𝐷 = (1𝑜 mDeg 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1fval.d | . 2 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | oveq2 6698 | . . . 4 ⊢ (𝑟 = 𝑅 → (1𝑜 mDeg 𝑟) = (1𝑜 mDeg 𝑅)) | |
3 | df-deg1 23861 | . . . 4 ⊢ deg1 = (𝑟 ∈ V ↦ (1𝑜 mDeg 𝑟)) | |
4 | ovex 6718 | . . . 4 ⊢ (1𝑜 mDeg 𝑅) ∈ V | |
5 | 2, 3, 4 | fvmpt 6321 | . . 3 ⊢ (𝑅 ∈ V → ( deg1 ‘𝑅) = (1𝑜 mDeg 𝑅)) |
6 | fvprc 6223 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = ∅) | |
7 | reldmmdeg 23862 | . . . . 5 ⊢ Rel dom mDeg | |
8 | 7 | ovprc2 6725 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1𝑜 mDeg 𝑅) = ∅) |
9 | 6, 8 | eqtr4d 2688 | . . 3 ⊢ (¬ 𝑅 ∈ V → ( deg1 ‘𝑅) = (1𝑜 mDeg 𝑅)) |
10 | 5, 9 | pm2.61i 176 | . 2 ⊢ ( deg1 ‘𝑅) = (1𝑜 mDeg 𝑅) |
11 | 1, 10 | eqtri 2673 | 1 ⊢ 𝐷 = (1𝑜 mDeg 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 ‘cfv 5926 (class class class)co 6690 1𝑜c1o 7598 mDeg cmdg 23858 deg1 cdg1 23859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-mdeg 23860 df-deg1 23861 |
This theorem is referenced by: deg1xrf 23886 deg1cl 23888 deg1propd 23891 deg1z 23892 deg1nn0cl 23893 deg1ldg 23897 deg1leb 23900 deg1val 23901 deg1addle 23906 deg1vscale 23909 deg1vsca 23910 deg1mulle2 23914 deg1le0 23916 |
Copyright terms: Public domain | W3C validator |