![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1ldgn | Structured version Visualization version GIF version |
Description: An index at which a polynomial is zero, cannot be its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1ldg.y | ⊢ 𝑌 = (0g‘𝑅) |
deg1ldg.a | ⊢ 𝐴 = (coe1‘𝐹) |
deg1ldgn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1ldgn.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1ldgn.x | ⊢ (𝜑 → 𝑋 ∈ ℕ0) |
deg1ldgn.e | ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) |
Ref | Expression |
---|---|
deg1ldgn | ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1ldgn.e | . 2 ⊢ (𝜑 → (𝐴‘𝑋) = 𝑌) | |
2 | fveq2 6350 | . . . . . 6 ⊢ ((𝐷‘𝐹) = 𝑋 → (𝐴‘(𝐷‘𝐹)) = (𝐴‘𝑋)) | |
3 | 2 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘(𝐷‘𝐹)) = (𝐴‘𝑋)) |
4 | deg1ldgn.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | 4 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝑅 ∈ Ring) |
6 | deg1ldgn.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
7 | 6 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝐹 ∈ 𝐵) |
8 | deg1ldgn.x | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ ℕ0) | |
9 | eleq1a 2832 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℕ0 → ((𝐷‘𝐹) = 𝑋 → (𝐷‘𝐹) ∈ ℕ0)) | |
10 | 8, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐷‘𝐹) = 𝑋 → (𝐷‘𝐹) ∈ ℕ0)) |
11 | 10 | imp 444 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐷‘𝐹) ∈ ℕ0) |
12 | deg1z.d | . . . . . . . . . 10 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
13 | deg1z.p | . . . . . . . . . 10 ⊢ 𝑃 = (Poly1‘𝑅) | |
14 | deg1z.z | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑃) | |
15 | deg1nn0cl.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑃) | |
16 | 12, 13, 14, 15 | deg1nn0clb 24047 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
17 | 4, 6, 16 | syl2anc 696 | . . . . . . . 8 ⊢ (𝜑 → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
18 | 17 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈ ℕ0)) |
19 | 11, 18 | mpbird 247 | . . . . . 6 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → 𝐹 ≠ 0 ) |
20 | deg1ldg.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑅) | |
21 | deg1ldg.a | . . . . . . 7 ⊢ 𝐴 = (coe1‘𝐹) | |
22 | 12, 13, 14, 15, 20, 21 | deg1ldg 24049 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) |
23 | 5, 7, 19, 22 | syl3anc 1477 | . . . . 5 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘(𝐷‘𝐹)) ≠ 𝑌) |
24 | 3, 23 | eqnetrrd 2998 | . . . 4 ⊢ ((𝜑 ∧ (𝐷‘𝐹) = 𝑋) → (𝐴‘𝑋) ≠ 𝑌) |
25 | 24 | ex 449 | . . 3 ⊢ (𝜑 → ((𝐷‘𝐹) = 𝑋 → (𝐴‘𝑋) ≠ 𝑌)) |
26 | 25 | necon2d 2953 | . 2 ⊢ (𝜑 → ((𝐴‘𝑋) = 𝑌 → (𝐷‘𝐹) ≠ 𝑋)) |
27 | 1, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝐷‘𝐹) ≠ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ≠ wne 2930 ‘cfv 6047 ℕ0cn0 11482 Basecbs 16057 0gc0g 16300 Ringcrg 18745 Poly1cpl1 19747 coe1cco1 19748 deg1 cdg1 24011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-inf2 8709 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-addf 10205 ax-mulf 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-se 5224 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-isom 6056 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-of 7060 df-om 7229 df-1st 7331 df-2nd 7332 df-supp 7462 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-map 8023 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-fsupp 8439 df-sup 8511 df-oi 8578 df-card 8953 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-fz 12518 df-fzo 12658 df-seq 12994 df-hash 13310 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-sets 16064 df-ress 16065 df-plusg 16154 df-mulr 16155 df-starv 16156 df-sca 16157 df-vsca 16158 df-tset 16160 df-ple 16161 df-ds 16164 df-unif 16165 df-0g 16302 df-gsum 16303 df-mgm 17441 df-sgrp 17483 df-mnd 17494 df-submnd 17535 df-grp 17624 df-minusg 17625 df-mulg 17740 df-subg 17790 df-cntz 17948 df-cmn 18393 df-abl 18394 df-mgp 18688 df-ur 18700 df-ring 18747 df-cring 18748 df-psr 19556 df-mpl 19558 df-opsr 19560 df-psr1 19750 df-ply1 19752 df-coe1 19753 df-cnfld 19947 df-mdeg 24012 df-deg1 24013 |
This theorem is referenced by: deg1sublt 24067 |
Copyright terms: Public domain | W3C validator |