MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul2 Structured version   Visualization version   GIF version

Theorem deg1mul2 24710
Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1mul2.d 𝐷 = ( deg1𝑅)
deg1mul2.p 𝑃 = (Poly1𝑅)
deg1mul2.e 𝐸 = (RLReg‘𝑅)
deg1mul2.b 𝐵 = (Base‘𝑃)
deg1mul2.t · = (.r𝑃)
deg1mul2.z 0 = (0g𝑃)
deg1mul2.r (𝜑𝑅 ∈ Ring)
deg1mul2.fb (𝜑𝐹𝐵)
deg1mul2.fz (𝜑𝐹0 )
deg1mul2.fc (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸)
deg1mul2.gb (𝜑𝐺𝐵)
deg1mul2.gz (𝜑𝐺0 )
Assertion
Ref Expression
deg1mul2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))

Proof of Theorem deg1mul2
StepHypRef Expression
1 deg1mul2.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 deg1mul2.p . . . . . 6 𝑃 = (Poly1𝑅)
32ply1ring 20418 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
5 deg1mul2.fb . . . 4 (𝜑𝐹𝐵)
6 deg1mul2.gb . . . 4 (𝜑𝐺𝐵)
7 deg1mul2.b . . . . 5 𝐵 = (Base‘𝑃)
8 deg1mul2.t . . . . 5 · = (.r𝑃)
97, 8ringcl 19313 . . . 4 ((𝑃 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
104, 5, 6, 9syl3anc 1367 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
11 deg1mul2.d . . . 4 𝐷 = ( deg1𝑅)
1211, 2, 7deg1xrcl 24678 . . 3 ((𝐹 · 𝐺) ∈ 𝐵 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*)
1310, 12syl 17 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ∈ ℝ*)
14 deg1mul2.fz . . . . . 6 (𝜑𝐹0 )
15 deg1mul2.z . . . . . . 7 0 = (0g𝑃)
1611, 2, 15, 7deg1nn0cl 24684 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
171, 5, 14, 16syl3anc 1367 . . . . 5 (𝜑 → (𝐷𝐹) ∈ ℕ0)
18 deg1mul2.gz . . . . . 6 (𝜑𝐺0 )
1911, 2, 15, 7deg1nn0cl 24684 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → (𝐷𝐺) ∈ ℕ0)
201, 6, 18, 19syl3anc 1367 . . . . 5 (𝜑 → (𝐷𝐺) ∈ ℕ0)
2117, 20nn0addcld 11962 . . . 4 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ∈ ℕ0)
2221nn0red 11959 . . 3 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ∈ ℝ)
2322rexrd 10693 . 2 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ∈ ℝ*)
2417nn0red 11959 . . . 4 (𝜑 → (𝐷𝐹) ∈ ℝ)
2524leidd 11208 . . 3 (𝜑 → (𝐷𝐹) ≤ (𝐷𝐹))
2620nn0red 11959 . . . 4 (𝜑 → (𝐷𝐺) ∈ ℝ)
2726leidd 11208 . . 3 (𝜑 → (𝐷𝐺) ≤ (𝐷𝐺))
282, 11, 1, 7, 8, 5, 6, 17, 20, 25, 27deg1mulle2 24705 . 2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ ((𝐷𝐹) + (𝐷𝐺)))
29 eqid 2823 . . . . 5 (.r𝑅) = (.r𝑅)
302, 8, 29, 7, 11, 15, 1, 5, 14, 6, 18coe1mul4 24696 . . . 4 (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) = (((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))))
31 eqid 2823 . . . . . . 7 (0g𝑅) = (0g𝑅)
32 eqid 2823 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
3311, 2, 15, 7, 31, 32deg1ldg 24688 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐺𝐵𝐺0 ) → ((coe1𝐺)‘(𝐷𝐺)) ≠ (0g𝑅))
341, 6, 18, 33syl3anc 1367 . . . . 5 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ≠ (0g𝑅))
35 deg1mul2.fc . . . . . . 7 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸)
36 eqid 2823 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
3732, 7, 2, 36coe1f 20381 . . . . . . . . 9 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
386, 37syl 17 . . . . . . . 8 (𝜑 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
3938, 20ffvelrnd 6854 . . . . . . 7 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) ∈ (Base‘𝑅))
40 deg1mul2.e . . . . . . . 8 𝐸 = (RLReg‘𝑅)
4140, 36, 29, 31rrgeq0i 20064 . . . . . . 7 ((((coe1𝐹)‘(𝐷𝐹)) ∈ 𝐸 ∧ ((coe1𝐺)‘(𝐷𝐺)) ∈ (Base‘𝑅)) → ((((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) = (0g𝑅) → ((coe1𝐺)‘(𝐷𝐺)) = (0g𝑅)))
4235, 39, 41syl2anc 586 . . . . . 6 (𝜑 → ((((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) = (0g𝑅) → ((coe1𝐺)‘(𝐷𝐺)) = (0g𝑅)))
4342necon3d 3039 . . . . 5 (𝜑 → (((coe1𝐺)‘(𝐷𝐺)) ≠ (0g𝑅) → (((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) ≠ (0g𝑅)))
4434, 43mpd 15 . . . 4 (𝜑 → (((coe1𝐹)‘(𝐷𝐹))(.r𝑅)((coe1𝐺)‘(𝐷𝐺))) ≠ (0g𝑅))
4530, 44eqnetrd 3085 . . 3 (𝜑 → ((coe1‘(𝐹 · 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) ≠ (0g𝑅))
46 eqid 2823 . . . 4 (coe1‘(𝐹 · 𝐺)) = (coe1‘(𝐹 · 𝐺))
4711, 2, 7, 31, 46deg1ge 24694 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ ((𝐷𝐹) + (𝐷𝐺)) ∈ ℕ0 ∧ ((coe1‘(𝐹 · 𝐺))‘((𝐷𝐹) + (𝐷𝐺))) ≠ (0g𝑅)) → ((𝐷𝐹) + (𝐷𝐺)) ≤ (𝐷‘(𝐹 · 𝐺)))
4810, 21, 45, 47syl3anc 1367 . 2 (𝜑 → ((𝐷𝐹) + (𝐷𝐺)) ≤ (𝐷‘(𝐹 · 𝐺)))
4913, 23, 28, 48xrletrid 12551 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) = ((𝐷𝐹) + (𝐷𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158   + caddc 10542  *cxr 10676  cle 10678  0cn0 11900  Basecbs 16485  .rcmulr 16568  0gc0g 16715  Ringcrg 19299  RLRegcrlreg 20054  Poly1cpl1 20347  coe1cco1 20348   deg1 cdg1 24650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-subrg 19535  df-rlreg 20058  df-psr 20138  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-ply1 20352  df-coe1 20353  df-cnfld 20548  df-mdeg 24651  df-deg1 24652
This theorem is referenced by:  ply1domn  24719  ply1divmo  24731  fta1glem1  24761  mon1psubm  39813  deg1mhm  39814
  Copyright terms: Public domain W3C validator