MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mul3 Structured version   Visualization version   GIF version

Theorem deg1mul3 24703
Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
deg1mul3.d 𝐷 = ( deg1𝑅)
deg1mul3.p 𝑃 = (Poly1𝑅)
deg1mul3.e 𝐸 = (RLReg‘𝑅)
deg1mul3.b 𝐵 = (Base‘𝑃)
deg1mul3.t · = (.r𝑃)
deg1mul3.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
deg1mul3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))

Proof of Theorem deg1mul3
StepHypRef Expression
1 deg1mul3.e . . . . . . . 8 𝐸 = (RLReg‘𝑅)
2 eqid 2821 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
31, 2rrgss 20059 . . . . . . 7 𝐸 ⊆ (Base‘𝑅)
43sseli 3962 . . . . . 6 (𝐹𝐸𝐹 ∈ (Base‘𝑅))
5 deg1mul3.p . . . . . . 7 𝑃 = (Poly1𝑅)
6 deg1mul3.b . . . . . . 7 𝐵 = (Base‘𝑃)
7 deg1mul3.a . . . . . . 7 𝐴 = (algSc‘𝑃)
8 deg1mul3.t . . . . . . 7 · = (.r𝑃)
9 eqid 2821 . . . . . . 7 (.r𝑅) = (.r𝑅)
105, 6, 2, 7, 8, 9coe1sclmul 20444 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑅) ∧ 𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)))
114, 10syl3an2 1160 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (coe1‘((𝐴𝐹) · 𝐺)) = ((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)))
1211oveq1d 7165 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) = (((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)) supp (0g𝑅)))
13 eqid 2821 . . . . 5 (0g𝑅) = (0g𝑅)
14 nn0ex 11897 . . . . . 6 0 ∈ V
1514a1i 11 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ℕ0 ∈ V)
16 simp1 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝑅 ∈ Ring)
17 simp2 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐹𝐸)
18 eqid 2821 . . . . . . 7 (coe1𝐺) = (coe1𝐺)
1918, 6, 5, 2coe1f 20373 . . . . . 6 (𝐺𝐵 → (coe1𝐺):ℕ0⟶(Base‘𝑅))
20193ad2ant3 1131 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (coe1𝐺):ℕ0⟶(Base‘𝑅))
211, 2, 9, 13, 15, 16, 17, 20rrgsupp 20058 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (((ℕ0 × {𝐹}) ∘f (.r𝑅)(coe1𝐺)) supp (0g𝑅)) = ((coe1𝐺) supp (0g𝑅)))
2212, 21eqtrd 2856 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)) = ((coe1𝐺) supp (0g𝑅)))
2322supeq1d 8904 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
245ply1ring 20410 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
25243ad2ant1 1129 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝑃 ∈ Ring)
265, 7, 2, 6ply1sclf 20447 . . . . . 6 (𝑅 ∈ Ring → 𝐴:(Base‘𝑅)⟶𝐵)
27263ad2ant1 1129 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐴:(Base‘𝑅)⟶𝐵)
2843ad2ant2 1130 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐹 ∈ (Base‘𝑅))
2927, 28ffvelrnd 6846 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐴𝐹) ∈ 𝐵)
30 simp3 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → 𝐺𝐵)
316, 8ringcl 19305 . . . 4 ((𝑃 ∈ Ring ∧ (𝐴𝐹) ∈ 𝐵𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
3225, 29, 30, 31syl3anc 1367 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → ((𝐴𝐹) · 𝐺) ∈ 𝐵)
33 deg1mul3.d . . . 4 𝐷 = ( deg1𝑅)
34 eqid 2821 . . . 4 (coe1‘((𝐴𝐹) · 𝐺)) = (coe1‘((𝐴𝐹) · 𝐺))
3533, 5, 6, 13, 34deg1val 24684 . . 3 (((𝐴𝐹) · 𝐺) ∈ 𝐵 → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
3632, 35syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = sup(((coe1‘((𝐴𝐹) · 𝐺)) supp (0g𝑅)), ℝ*, < ))
3733, 5, 6, 13, 18deg1val 24684 . . 3 (𝐺𝐵 → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
38373ad2ant3 1131 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷𝐺) = sup(((coe1𝐺) supp (0g𝑅)), ℝ*, < ))
3923, 36, 383eqtr4d 2866 1 ((𝑅 ∈ Ring ∧ 𝐹𝐸𝐺𝐵) → (𝐷‘((𝐴𝐹) · 𝐺)) = (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4560   × cxp 5547  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401   supp csupp 7824  supcsup 8898  *cxr 10668   < clt 10669  0cn0 11891  Basecbs 16477  .rcmulr 16560  0gc0g 16707  Ringcrg 19291  RLRegcrlreg 20046  algSccascl 20078  Poly1cpl1 20339  coe1cco1 20340   deg1 cdg1 24642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-lmod 19630  df-lss 19698  df-rlreg 20050  df-ascl 20081  df-psr 20130  df-mvr 20131  df-mpl 20132  df-opsr 20134  df-psr1 20342  df-vr1 20343  df-ply1 20344  df-coe1 20345  df-cnfld 20540  df-mdeg 24643  df-deg1 24644
This theorem is referenced by:  uc1pmon1p  24739  ig1peu  24759
  Copyright terms: Public domain W3C validator