MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1nn0clb Structured version   Visualization version   GIF version

Theorem deg1nn0clb 23599
Description: A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
deg1nn0clb ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))

Proof of Theorem deg1nn0clb
StepHypRef Expression
1 deg1z.d . . . 4 𝐷 = ( deg1𝑅)
2 deg1z.p . . . 4 𝑃 = (Poly1𝑅)
3 deg1z.z . . . 4 0 = (0g𝑃)
4 deg1nn0cl.b . . . 4 𝐵 = (Base‘𝑃)
51, 2, 3, 4deg1nn0cl 23597 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
653expia 1259 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 → (𝐷𝐹) ∈ ℕ0))
7 mnfnre 9939 . . . . . . 7 -∞ ∉ ℝ
87neli 2885 . . . . . 6 ¬ -∞ ∈ ℝ
9 nn0re 11151 . . . . . 6 (-∞ ∈ ℕ0 → -∞ ∈ ℝ)
108, 9mto 187 . . . . 5 ¬ -∞ ∈ ℕ0
111, 2, 3deg1z 23596 . . . . . . 7 (𝑅 ∈ Ring → (𝐷0 ) = -∞)
1211adantr 480 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐷0 ) = -∞)
1312eleq1d 2672 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷0 ) ∈ ℕ0 ↔ -∞ ∈ ℕ0))
1410, 13mtbiri 316 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ¬ (𝐷0 ) ∈ ℕ0)
15 fveq2 6088 . . . . . 6 (𝐹 = 0 → (𝐷𝐹) = (𝐷0 ))
1615eleq1d 2672 . . . . 5 (𝐹 = 0 → ((𝐷𝐹) ∈ ℕ0 ↔ (𝐷0 ) ∈ ℕ0))
1716notbid 307 . . . 4 (𝐹 = 0 → (¬ (𝐷𝐹) ∈ ℕ0 ↔ ¬ (𝐷0 ) ∈ ℕ0))
1814, 17syl5ibrcom 236 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹 = 0 → ¬ (𝐷𝐹) ∈ ℕ0))
1918necon2ad 2797 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → ((𝐷𝐹) ∈ ℕ0𝐹0 ))
206, 19impbid 201 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵) → (𝐹0 ↔ (𝐷𝐹) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  cfv 5790  cr 9792  -∞cmnf 9929  0cn0 11142  Basecbs 15644  0gc0g 15872  Ringcrg 18319  Poly1cpl1 19317   deg1 cdg1 23563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-sup 8209  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-fz 12156  df-fzo 12293  df-seq 12622  df-hash 12938  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-0g 15874  df-gsum 15875  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-grp 17197  df-minusg 17198  df-subg 17363  df-cntz 17522  df-cmn 17967  df-abl 17968  df-mgp 18262  df-ur 18274  df-ring 18321  df-cring 18322  df-psr 19126  df-mpl 19128  df-opsr 19130  df-psr1 19320  df-ply1 19322  df-cnfld 19517  df-mdeg 23564  df-deg1 23565
This theorem is referenced by:  deg1ldgn  23602  ply1domn  23632  uc1pmon1p  23660  ply1remlem  23671  fta1glem1  23674  fta1g  23676  lgsqrlem4  24819  idomrootle  36586  mon1psubm  36597
  Copyright terms: Public domain W3C validator