MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1submon1p Structured version   Visualization version   GIF version

Theorem deg1submon1p 24673
Description: The difference of two monic polynomials of the same degree is a polynomial of lesser degree. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1submon1p.d 𝐷 = ( deg1𝑅)
deg1submon1p.o 𝑂 = (Monic1p𝑅)
deg1submon1p.p 𝑃 = (Poly1𝑅)
deg1submon1p.m = (-g𝑃)
deg1submon1p.r (𝜑𝑅 ∈ Ring)
deg1submon1p.f1 (𝜑𝐹𝑂)
deg1submon1p.f2 (𝜑 → (𝐷𝐹) = 𝑋)
deg1submon1p.g1 (𝜑𝐺𝑂)
deg1submon1p.g2 (𝜑 → (𝐷𝐺) = 𝑋)
Assertion
Ref Expression
deg1submon1p (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝑋)

Proof of Theorem deg1submon1p
StepHypRef Expression
1 deg1submon1p.d . 2 𝐷 = ( deg1𝑅)
2 deg1submon1p.p . 2 𝑃 = (Poly1𝑅)
3 eqid 2818 . 2 (Base‘𝑃) = (Base‘𝑃)
4 deg1submon1p.m . 2 = (-g𝑃)
5 deg1submon1p.f2 . . 3 (𝜑 → (𝐷𝐹) = 𝑋)
6 deg1submon1p.r . . . 4 (𝜑𝑅 ∈ Ring)
7 deg1submon1p.f1 . . . . 5 (𝜑𝐹𝑂)
8 deg1submon1p.o . . . . . 6 𝑂 = (Monic1p𝑅)
92, 3, 8mon1pcl 24665 . . . . 5 (𝐹𝑂𝐹 ∈ (Base‘𝑃))
107, 9syl 17 . . . 4 (𝜑𝐹 ∈ (Base‘𝑃))
11 eqid 2818 . . . . . 6 (0g𝑃) = (0g𝑃)
122, 11, 8mon1pn0 24667 . . . . 5 (𝐹𝑂𝐹 ≠ (0g𝑃))
137, 12syl 17 . . . 4 (𝜑𝐹 ≠ (0g𝑃))
141, 2, 11, 3deg1nn0cl 24609 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹 ∈ (Base‘𝑃) ∧ 𝐹 ≠ (0g𝑃)) → (𝐷𝐹) ∈ ℕ0)
156, 10, 13, 14syl3anc 1363 . . 3 (𝜑 → (𝐷𝐹) ∈ ℕ0)
165, 15eqeltrrd 2911 . 2 (𝜑𝑋 ∈ ℕ0)
1716nn0red 11944 . . . 4 (𝜑𝑋 ∈ ℝ)
1817leidd 11194 . . 3 (𝜑𝑋𝑋)
195, 18eqbrtrd 5079 . 2 (𝜑 → (𝐷𝐹) ≤ 𝑋)
20 deg1submon1p.g1 . . 3 (𝜑𝐺𝑂)
212, 3, 8mon1pcl 24665 . . 3 (𝐺𝑂𝐺 ∈ (Base‘𝑃))
2220, 21syl 17 . 2 (𝜑𝐺 ∈ (Base‘𝑃))
23 deg1submon1p.g2 . . 3 (𝜑 → (𝐷𝐺) = 𝑋)
2423, 18eqbrtrd 5079 . 2 (𝜑 → (𝐷𝐺) ≤ 𝑋)
25 eqid 2818 . 2 (coe1𝐹) = (coe1𝐹)
26 eqid 2818 . 2 (coe1𝐺) = (coe1𝐺)
275fveq2d 6667 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) = ((coe1𝐹)‘𝑋))
28 eqid 2818 . . . . . 6 (1r𝑅) = (1r𝑅)
291, 28, 8mon1pldg 24670 . . . . 5 (𝐹𝑂 → ((coe1𝐹)‘(𝐷𝐹)) = (1r𝑅))
307, 29syl 17 . . . 4 (𝜑 → ((coe1𝐹)‘(𝐷𝐹)) = (1r𝑅))
3127, 30eqtr3d 2855 . . 3 (𝜑 → ((coe1𝐹)‘𝑋) = (1r𝑅))
321, 28, 8mon1pldg 24670 . . . 4 (𝐺𝑂 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
3320, 32syl 17 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = (1r𝑅))
3423fveq2d 6667 . . 3 (𝜑 → ((coe1𝐺)‘(𝐷𝐺)) = ((coe1𝐺)‘𝑋))
3531, 33, 343eqtr2d 2859 . 2 (𝜑 → ((coe1𝐹)‘𝑋) = ((coe1𝐺)‘𝑋))
361, 2, 3, 4, 16, 6, 10, 19, 22, 24, 25, 26, 35deg1sublt 24631 1 (𝜑 → (𝐷‘(𝐹 𝐺)) < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cfv 6348  (class class class)co 7145   < clt 10663  cle 10664  0cn0 11885  Basecbs 16471  0gc0g 16701  -gcsg 18043  1rcur 19180  Ringcrg 19226  Poly1cpl1 20273  coe1cco1 20274   deg1 cdg1 24575  Monic1pcmn1 24646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-subrg 19462  df-lmod 19565  df-lss 19633  df-rlreg 19984  df-psr 20064  df-mpl 20066  df-opsr 20068  df-psr1 20276  df-ply1 20278  df-coe1 20279  df-cnfld 20474  df-mdeg 24576  df-deg1 24577  df-mon1 24651
This theorem is referenced by:  ig1peu  24692
  Copyright terms: Public domain W3C validator