MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-aj Structured version   Visualization version   GIF version

Definition df-aj 27914
Description: Define the adjoint of an operator (if it exists). The domain of 𝑈adj𝑊 is the set of all operators from 𝑈 to 𝑊 that have an adjoint. Definition 3.9-1 of [Kreyszig] p. 196, although we don't require that 𝑈 and 𝑊 be Hilbert spaces nor that the operators be linear. Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Assertion
Ref Expression
df-aj adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
Distinct variable group:   𝑡,𝑠,𝑢,𝑤,𝑥,𝑦

Detailed syntax breakdown of Definition df-aj
StepHypRef Expression
1 caj 27912 . 2 class adj
2 vu . . 3 setvar 𝑢
3 vw . . 3 setvar 𝑤
4 cnv 27748 . . 3 class NrmCVec
52cv 1631 . . . . . . 7 class 𝑢
6 cba 27750 . . . . . . 7 class BaseSet
75, 6cfv 6049 . . . . . 6 class (BaseSet‘𝑢)
83cv 1631 . . . . . . 7 class 𝑤
98, 6cfv 6049 . . . . . 6 class (BaseSet‘𝑤)
10 vt . . . . . . 7 setvar 𝑡
1110cv 1631 . . . . . 6 class 𝑡
127, 9, 11wf 6045 . . . . 5 wff 𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤)
13 vs . . . . . . 7 setvar 𝑠
1413cv 1631 . . . . . 6 class 𝑠
159, 7, 14wf 6045 . . . . 5 wff 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢)
16 vx . . . . . . . . . . 11 setvar 𝑥
1716cv 1631 . . . . . . . . . 10 class 𝑥
1817, 11cfv 6049 . . . . . . . . 9 class (𝑡𝑥)
19 vy . . . . . . . . . 10 setvar 𝑦
2019cv 1631 . . . . . . . . 9 class 𝑦
21 cdip 27864 . . . . . . . . . 10 class ·𝑖OLD
228, 21cfv 6049 . . . . . . . . 9 class (·𝑖OLD𝑤)
2318, 20, 22co 6813 . . . . . . . 8 class ((𝑡𝑥)(·𝑖OLD𝑤)𝑦)
2420, 14cfv 6049 . . . . . . . . 9 class (𝑠𝑦)
255, 21cfv 6049 . . . . . . . . 9 class (·𝑖OLD𝑢)
2617, 24, 25co 6813 . . . . . . . 8 class (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2723, 26wceq 1632 . . . . . . 7 wff ((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2827, 19, 9wral 3050 . . . . . 6 wff 𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
2928, 16, 7wral 3050 . . . . 5 wff 𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦))
3012, 15, 29w3a 1072 . . . 4 wff (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))
3130, 10, 13copab 4864 . . 3 class {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))}
322, 3, 4, 4, 31cmpt2 6815 . 2 class (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
331, 32wceq 1632 1 wff adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
Colors of variables: wff setvar class
This definition is referenced by:  ajfval  27973
  Copyright terms: Public domain W3C validator