Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bnj15 Structured version   Visualization version   GIF version

Definition df-bnj15 29806
Description: Define the following predicate: 𝑅 is both well-founded and set-like on 𝐴. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-bnj15 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))

Detailed syntax breakdown of Definition df-bnj15
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cR . . 3 class 𝑅
31, 2w-bnj15 29805 . 2 wff 𝑅 FrSe 𝐴
41, 2wfr 4984 . . 3 wff 𝑅 Fr 𝐴
51, 2w-bnj13 29803 . . 3 wff 𝑅 Se 𝐴
64, 5wa 383 . 2 wff (𝑅 Fr 𝐴𝑅 Se 𝐴)
73, 6wb 195 1 wff (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  bnj93  29981  bnj1177  30122  bnj1364  30144  bnj1417  30157
  Copyright terms: Public domain W3C validator