HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-ch0 Structured version   Visualization version   GIF version

Definition df-ch0 27276
Description: Define the zero for closed subspaces of Hilbert space. See h0elch 27278 for closure law. (Contributed by NM, 30-May-1999.) (New usage is discouraged.)
Assertion
Ref Expression
df-ch0 0 = {0}

Detailed syntax breakdown of Definition df-ch0
StepHypRef Expression
1 c0h 26958 . 2 class 0
2 c0v 26947 . . 3 class 0
32csn 4028 . 2 class {0}
41, 3wceq 1474 1 wff 0 = {0}
Colors of variables: wff setvar class
This definition is referenced by:  elch0  27277  h0elch  27278  sh0le  27465  spansn0  27566  df0op2  27777  ho01i  27853  hh0oi  27928  nmop0h  28016
  Copyright terms: Public domain W3C validator