MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cring Structured version   Visualization version   GIF version

Definition df-cring 18322
Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.)
Assertion
Ref Expression
df-cring CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd}

Detailed syntax breakdown of Definition df-cring
StepHypRef Expression
1 ccrg 18320 . 2 class CRing
2 vf . . . . . 6 setvar 𝑓
32cv 1474 . . . . 5 class 𝑓
4 cmgp 18261 . . . . 5 class mulGrp
53, 4cfv 5790 . . . 4 class (mulGrp‘𝑓)
6 ccmn 17965 . . . 4 class CMnd
75, 6wcel 1977 . . 3 wff (mulGrp‘𝑓) ∈ CMnd
8 crg 18319 . . 3 class Ring
97, 2, 8crab 2900 . 2 class {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd}
101, 9wceq 1475 1 wff CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd}
Colors of variables: wff setvar class
This definition is referenced by:  iscrng  18326
  Copyright terms: Public domain W3C validator