MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-field Structured version   Visualization version   GIF version

Definition df-field 18798
Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015.)
Assertion
Ref Expression
df-field Field = (DivRing ∩ CRing)

Detailed syntax breakdown of Definition df-field
StepHypRef Expression
1 cfield 18796 . 2 class Field
2 cdr 18795 . . 3 class DivRing
3 ccrg 18594 . . 3 class CRing
42, 3cin 3606 . 2 class (DivRing ∩ CRing)
51, 4wceq 1523 1 wff Field = (DivRing ∩ CRing)
Colors of variables: wff setvar class
This definition is referenced by:  isfld  18804  fldc  42408  fldhmsubc  42409  fldcALTV  42426  fldhmsubcALTV  42427
  Copyright terms: Public domain W3C validator