MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-gic Structured version   Visualization version   GIF version

Definition df-gic 17903
Description: Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
df-gic 𝑔 = ( GrpIso “ (V ∖ 1𝑜))

Detailed syntax breakdown of Definition df-gic
StepHypRef Expression
1 cgic 17901 . 2 class 𝑔
2 cgim 17900 . . . 4 class GrpIso
32ccnv 5265 . . 3 class GrpIso
4 cvv 3340 . . . 4 class V
5 c1o 7722 . . . 4 class 1𝑜
64, 5cdif 3712 . . 3 class (V ∖ 1𝑜)
73, 6cima 5269 . 2 class ( GrpIso “ (V ∖ 1𝑜))
81, 7wceq 1632 1 wff 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
Colors of variables: wff setvar class
This definition is referenced by:  brgic  17912  gicer  17919
  Copyright terms: Public domain W3C validator