Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ii Structured version   Visualization version   GIF version

Definition df-ii 22727
 Description: Define the unit interval with the Euclidean topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
df-ii II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))

Detailed syntax breakdown of Definition df-ii
StepHypRef Expression
1 cii 22725 . 2 class II
2 cabs 14018 . . . . 5 class abs
3 cmin 10304 . . . . 5 class
42, 3ccom 5147 . . . 4 class (abs ∘ − )
5 cc0 9974 . . . . . 6 class 0
6 c1 9975 . . . . . 6 class 1
7 cicc 12216 . . . . . 6 class [,]
85, 6, 7co 6690 . . . . 5 class (0[,]1)
98, 8cxp 5141 . . . 4 class ((0[,]1) × (0[,]1))
104, 9cres 5145 . . 3 class ((abs ∘ − ) ↾ ((0[,]1) × (0[,]1)))
11 cmopn 19784 . . 3 class MetOpen
1210, 11cfv 5926 . 2 class (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
131, 12wceq 1523 1 wff II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
 Colors of variables: wff setvar class This definition is referenced by:  iitopon  22729  dfii2  22732  dfii3  22733  lebnumii  22812
 Copyright terms: Public domain W3C validator