Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-invr Structured version   Visualization version   GIF version

Definition df-invr 18718
 Description: Define multiplicative inverse. (Contributed by NM, 21-Sep-2011.)
Assertion
Ref Expression
df-invr invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))

Detailed syntax breakdown of Definition df-invr
StepHypRef Expression
1 cinvr 18717 . 2 class invr
2 vr . . 3 setvar 𝑟
3 cvv 3231 . . 3 class V
42cv 1522 . . . . . 6 class 𝑟
5 cmgp 18535 . . . . . 6 class mulGrp
64, 5cfv 5926 . . . . 5 class (mulGrp‘𝑟)
7 cui 18685 . . . . . 6 class Unit
84, 7cfv 5926 . . . . 5 class (Unit‘𝑟)
9 cress 15905 . . . . 5 class s
106, 8, 9co 6690 . . . 4 class ((mulGrp‘𝑟) ↾s (Unit‘𝑟))
11 cminusg 17470 . . . 4 class invg
1210, 11cfv 5926 . . 3 class (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))
132, 3, 12cmpt 4762 . 2 class (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
141, 13wceq 1523 1 wff invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
 Colors of variables: wff setvar class This definition is referenced by:  invrfval  18719
 Copyright terms: Public domain W3C validator