Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ringc Structured version   Visualization version   GIF version

Definition df-ringc 41792
Description: Definition of the category Ring, relativized to a subset 𝑢. See also the note in [Lang] p. 91, and the item Rng in [Adamek] p. 478. This is the category of all unital rings in 𝑢 and homomorphisms between these rings. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Contributed by AV, 13-Feb-2020.) (Revised by AV, 8-Mar-2020.)
Assertion
Ref Expression
df-ringc RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))

Detailed syntax breakdown of Definition df-ringc
StepHypRef Expression
1 cringc 41790 . 2 class RingCat
2 vu . . 3 setvar 𝑢
3 cvv 3172 . . 3 class V
42cv 1473 . . . . 5 class 𝑢
5 cestrc 16531 . . . . 5 class ExtStrCat
64, 5cfv 5790 . . . 4 class (ExtStrCat‘𝑢)
7 crh 18481 . . . . 5 class RingHom
8 crg 18316 . . . . . . 7 class Ring
94, 8cin 3538 . . . . . 6 class (𝑢 ∩ Ring)
109, 9cxp 5026 . . . . 5 class ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))
117, 10cres 5030 . . . 4 class ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))
12 cresc 16237 . . . 4 class cat
136, 11, 12co 6527 . . 3 class ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring))))
142, 3, 13cmpt 4637 . 2 class (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
151, 14wceq 1474 1 wff RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
Colors of variables: wff setvar class
This definition is referenced by:  ringcval  41795
  Copyright terms: Public domain W3C validator