Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sigagen Structured version   Visualization version   GIF version

Definition df-sigagen 30176
 Description: Define the sigma-algebra generated by a given collection of sets as the intersection of all sigma-algebra containing that set. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
df-sigagen sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
Distinct variable group:   𝑥,𝑠

Detailed syntax breakdown of Definition df-sigagen
StepHypRef Expression
1 csigagen 30175 . 2 class sigaGen
2 vx . . 3 setvar 𝑥
3 cvv 3195 . . 3 class V
42cv 1480 . . . . . 6 class 𝑥
5 vs . . . . . . 7 setvar 𝑠
65cv 1480 . . . . . 6 class 𝑠
74, 6wss 3567 . . . . 5 wff 𝑥𝑠
84cuni 4427 . . . . . 6 class 𝑥
9 csiga 30144 . . . . . 6 class sigAlgebra
108, 9cfv 5876 . . . . 5 class (sigAlgebra‘ 𝑥)
117, 5, 10crab 2913 . . . 4 class {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠}
1211cint 4466 . . 3 class {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠}
132, 3, 12cmpt 4720 . 2 class (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
141, 13wceq 1481 1 wff sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
 Colors of variables: wff setvar class This definition is referenced by:  sigagenval  30177  dmsigagen  30181  brsiga  30220
 Copyright terms: Public domain W3C validator