MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symdif Structured version   Visualization version   GIF version

Definition df-symdif 3822
Description: Define the symmetric difference of two classes. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
df-symdif (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))

Detailed syntax breakdown of Definition df-symdif
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2csymdif 3821 . 2 class (𝐴𝐵)
41, 2cdif 3552 . . 3 class (𝐴𝐵)
52, 1cdif 3552 . . 3 class (𝐵𝐴)
64, 5cun 3553 . 2 class ((𝐴𝐵) ∪ (𝐵𝐴))
73, 6wceq 1480 1 wff (𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
Colors of variables: wff setvar class
This definition is referenced by:  symdifcom  3823  symdifeq1  3824  nfsymdif  3826  elsymdif  3827  dfsymdif3  3869  symdif0  4563  symdifv  4564  symdifid  4565
  Copyright terms: Public domain W3C validator