MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tsr Structured version   Visualization version   GIF version

Definition df-tsr 16973
Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.)
Assertion
Ref Expression
df-tsr TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}

Detailed syntax breakdown of Definition df-tsr
StepHypRef Expression
1 ctsr 16971 . 2 class TosetRel
2 vr . . . . . . 7 setvar 𝑟
32cv 1474 . . . . . 6 class 𝑟
43cdm 5028 . . . . 5 class dom 𝑟
54, 4cxp 5026 . . . 4 class (dom 𝑟 × dom 𝑟)
63ccnv 5027 . . . . 5 class 𝑟
73, 6cun 3538 . . . 4 class (𝑟𝑟)
85, 7wss 3540 . . 3 wff (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)
9 cps 16970 . . 3 class PosetRel
108, 2, 9crab 2900 . 2 class {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
111, 10wceq 1475 1 wff TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
Colors of variables: wff setvar class
This definition is referenced by:  istsr  16989
  Copyright terms: Public domain W3C validator