![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-upwlks | Structured version Visualization version GIF version |
Description: Define the set of all
walks (in a pseudograph), called "simple walks" in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudograhs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
Ref | Expression |
---|---|
df-upwlks | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cupwlks 42242 | . 2 class UPWalks | |
2 | vg | . . 3 setvar 𝑔 | |
3 | cvv 3340 | . . 3 class V | |
4 | vf | . . . . . . 7 setvar 𝑓 | |
5 | 4 | cv 1631 | . . . . . 6 class 𝑓 |
6 | 2 | cv 1631 | . . . . . . . . 9 class 𝑔 |
7 | ciedg 26095 | . . . . . . . . 9 class iEdg | |
8 | 6, 7 | cfv 6049 | . . . . . . . 8 class (iEdg‘𝑔) |
9 | 8 | cdm 5266 | . . . . . . 7 class dom (iEdg‘𝑔) |
10 | 9 | cword 13497 | . . . . . 6 class Word dom (iEdg‘𝑔) |
11 | 5, 10 | wcel 2139 | . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔) |
12 | cc0 10148 | . . . . . . 7 class 0 | |
13 | chash 13331 | . . . . . . . 8 class ♯ | |
14 | 5, 13 | cfv 6049 | . . . . . . 7 class (♯‘𝑓) |
15 | cfz 12539 | . . . . . . 7 class ... | |
16 | 12, 14, 15 | co 6814 | . . . . . 6 class (0...(♯‘𝑓)) |
17 | cvtx 26094 | . . . . . . 7 class Vtx | |
18 | 6, 17 | cfv 6049 | . . . . . 6 class (Vtx‘𝑔) |
19 | vp | . . . . . . 7 setvar 𝑝 | |
20 | 19 | cv 1631 | . . . . . 6 class 𝑝 |
21 | 16, 18, 20 | wf 6045 | . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) |
22 | vk | . . . . . . . . . 10 setvar 𝑘 | |
23 | 22 | cv 1631 | . . . . . . . . 9 class 𝑘 |
24 | 23, 5 | cfv 6049 | . . . . . . . 8 class (𝑓‘𝑘) |
25 | 24, 8 | cfv 6049 | . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓‘𝑘)) |
26 | 23, 20 | cfv 6049 | . . . . . . . 8 class (𝑝‘𝑘) |
27 | c1 10149 | . . . . . . . . . 10 class 1 | |
28 | caddc 10151 | . . . . . . . . . 10 class + | |
29 | 23, 27, 28 | co 6814 | . . . . . . . . 9 class (𝑘 + 1) |
30 | 29, 20 | cfv 6049 | . . . . . . . 8 class (𝑝‘(𝑘 + 1)) |
31 | 26, 30 | cpr 4323 | . . . . . . 7 class {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
32 | 25, 31 | wceq 1632 | . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
33 | cfzo 12679 | . . . . . . 7 class ..^ | |
34 | 12, 14, 33 | co 6814 | . . . . . 6 class (0..^(♯‘𝑓)) |
35 | 32, 22, 34 | wral 3050 | . . . . 5 wff ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} |
36 | 11, 21, 35 | w3a 1072 | . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))}) |
37 | 36, 4, 19 | copab 4864 | . . 3 class {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})} |
38 | 2, 3, 37 | cmpt 4881 | . 2 class (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
39 | 1, 38 | wceq 1632 | 1 wff UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
Colors of variables: wff setvar class |
This definition is referenced by: upwlksfval 42244 |
Copyright terms: Public domain | W3C validator |