Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-upwlks Structured version   Visualization version   GIF version

Definition df-upwlks 44003
Description: Define the set of all walks (in a pseudograph), called "simple walks" in the following.

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)."

According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4.

Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudograhs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Assertion
Ref Expression
df-upwlks UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Distinct variable group:   𝑓,𝑔,𝑘,𝑝

Detailed syntax breakdown of Definition df-upwlks
StepHypRef Expression
1 cupwlks 44002 . 2 class UPWalks
2 vg . . 3 setvar 𝑔
3 cvv 3494 . . 3 class V
4 vf . . . . . . 7 setvar 𝑓
54cv 1532 . . . . . 6 class 𝑓
62cv 1532 . . . . . . . . 9 class 𝑔
7 ciedg 26776 . . . . . . . . 9 class iEdg
86, 7cfv 6349 . . . . . . . 8 class (iEdg‘𝑔)
98cdm 5549 . . . . . . 7 class dom (iEdg‘𝑔)
109cword 13855 . . . . . 6 class Word dom (iEdg‘𝑔)
115, 10wcel 2110 . . . . 5 wff 𝑓 ∈ Word dom (iEdg‘𝑔)
12 cc0 10531 . . . . . . 7 class 0
13 chash 13684 . . . . . . . 8 class
145, 13cfv 6349 . . . . . . 7 class (♯‘𝑓)
15 cfz 12886 . . . . . . 7 class ...
1612, 14, 15co 7150 . . . . . 6 class (0...(♯‘𝑓))
17 cvtx 26775 . . . . . . 7 class Vtx
186, 17cfv 6349 . . . . . 6 class (Vtx‘𝑔)
19 vp . . . . . . 7 setvar 𝑝
2019cv 1532 . . . . . 6 class 𝑝
2116, 18, 20wf 6345 . . . . 5 wff 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔)
22 vk . . . . . . . . . 10 setvar 𝑘
2322cv 1532 . . . . . . . . 9 class 𝑘
2423, 5cfv 6349 . . . . . . . 8 class (𝑓𝑘)
2524, 8cfv 6349 . . . . . . 7 class ((iEdg‘𝑔)‘(𝑓𝑘))
2623, 20cfv 6349 . . . . . . . 8 class (𝑝𝑘)
27 c1 10532 . . . . . . . . . 10 class 1
28 caddc 10534 . . . . . . . . . 10 class +
2923, 27, 28co 7150 . . . . . . . . 9 class (𝑘 + 1)
3029, 20cfv 6349 . . . . . . . 8 class (𝑝‘(𝑘 + 1))
3126, 30cpr 4562 . . . . . . 7 class {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3225, 31wceq 1533 . . . . . 6 wff ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
33 cfzo 13027 . . . . . . 7 class ..^
3412, 14, 33co 7150 . . . . . 6 class (0..^(♯‘𝑓))
3532, 22, 34wral 3138 . . . . 5 wff 𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}
3611, 21, 35w3a 1083 . . . 4 wff (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})
3736, 4, 19copab 5120 . . 3 class {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}
382, 3, 37cmpt 5138 . 2 class (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
391, 38wceq 1533 1 wff UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
Colors of variables: wff setvar class
This definition is referenced by:  upwlksfval  44004
  Copyright terms: Public domain W3C validator