Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-wunc Structured version   Visualization version   GIF version

Definition df-wunc 9510
 Description: A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
df-wunc wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
Distinct variable group:   𝑥,𝑢

Detailed syntax breakdown of Definition df-wunc
StepHypRef Expression
1 cwunm 9508 . 2 class wUniCl
2 vx . . 3 setvar 𝑥
3 cvv 3195 . . 3 class V
42cv 1480 . . . . . 6 class 𝑥
5 vu . . . . . . 7 setvar 𝑢
65cv 1480 . . . . . 6 class 𝑢
74, 6wss 3567 . . . . 5 wff 𝑥𝑢
8 cwun 9507 . . . . 5 class WUni
97, 5, 8crab 2913 . . . 4 class {𝑢 ∈ WUni ∣ 𝑥𝑢}
109cint 4466 . . 3 class {𝑢 ∈ WUni ∣ 𝑥𝑢}
112, 3, 10cmpt 4720 . 2 class (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
121, 11wceq 1481 1 wff wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
 Colors of variables: wff setvar class This definition is referenced by:  wuncval  9549
 Copyright terms: Public domain W3C validator