MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac12a Structured version   Visualization version   GIF version

Theorem dfac12a 8914
Description: The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
dfac12a (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)

Proof of Theorem dfac12a
StepHypRef Expression
1 ssv 3604 . . . 4 dom card ⊆ V
2 eqss 3598 . . . 4 (dom card = V ↔ (dom card ⊆ V ∧ V ⊆ dom card))
31, 2mpbiran 952 . . 3 (dom card = V ↔ V ⊆ dom card)
4 dfac10 8903 . . 3 (CHOICE ↔ dom card = V)
5 unir1 8620 . . . 4 (𝑅1 “ On) = V
65sseq1i 3608 . . 3 ( (𝑅1 “ On) ⊆ dom card ↔ V ⊆ dom card)
73, 4, 63bitr4i 292 . 2 (CHOICE (𝑅1 “ On) ⊆ dom card)
8 dfac12r 8912 . 2 (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ (𝑅1 “ On) ⊆ dom card)
97, 8bitr4i 267 1 (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3555  𝒫 cpw 4130   cuni 4402  dom cdm 5074  cima 5077  Oncon0 5682  𝑅1cr1 8569  cardccrd 8705  CHOICEwac 8882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509  df-omul 7510  df-er 7687  df-en 7900  df-dom 7901  df-oi 8359  df-har 8407  df-r1 8571  df-rank 8572  df-card 8709  df-ac 8883
This theorem is referenced by:  dfac12  8915
  Copyright terms: Public domain W3C validator