MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac14 Structured version   Visualization version   GIF version

Theorem dfac14 22220
Description: Theorem ptcls 22218 is an equivalent of the axiom of choice. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
dfac14 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
Distinct variable group:   𝑓,𝑘,𝑠

Proof of Theorem dfac14
Dummy variables 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6664 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝑓𝑘) = (𝑓𝑥))
21unieqd 4841 . . . . . . . . 9 (𝑘 = 𝑥 (𝑓𝑘) = (𝑓𝑥))
32pweqd 4543 . . . . . . . 8 (𝑘 = 𝑥 → 𝒫 (𝑓𝑘) = 𝒫 (𝑓𝑥))
43cbvixpv 8473 . . . . . . 7 X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)
54eleq2i 2904 . . . . . 6 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) ↔ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥))
6 simplr 767 . . . . . . . . . . 11 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑓:dom 𝑓⟶Top)
76feqmptd 6727 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑓 = (𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))
87fveq2d 6668 . . . . . . . . 9 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → (∏t𝑓) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))
98fveq2d 6668 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → (cls‘(∏t𝑓)) = (cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))))
109fveq1d 6666 . . . . . . 7 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = ((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)))
11 eqid 2821 . . . . . . . 8 (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))) = (∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘)))
12 vex 3497 . . . . . . . . . 10 𝑓 ∈ V
1312dmex 7610 . . . . . . . . 9 dom 𝑓 ∈ V
1413a1i 11 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → dom 𝑓 ∈ V)
156ffvelrnda 6845 . . . . . . . . 9 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓𝑘) ∈ Top)
16 toptopon2 21520 . . . . . . . . 9 ((𝑓𝑘) ∈ Top ↔ (𝑓𝑘) ∈ (TopOn‘ (𝑓𝑘)))
1715, 16sylib 220 . . . . . . . 8 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑓𝑘) ∈ (TopOn‘ (𝑓𝑘)))
18 simpr 487 . . . . . . . . . . . 12 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥))
1918, 5sylibr 236 . . . . . . . . . . 11 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘))
20 vex 3497 . . . . . . . . . . . . 13 𝑠 ∈ V
2120elixp 8462 . . . . . . . . . . . 12 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) ↔ (𝑠 Fn dom 𝑓 ∧ ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘)))
2221simprbi 499 . . . . . . . . . . 11 (𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) → ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2319, 22syl 17 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ∀𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2423r19.21bi 3208 . . . . . . . . 9 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠𝑘) ∈ 𝒫 (𝑓𝑘))
2524elpwid 4552 . . . . . . . 8 ((((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) ∧ 𝑘 ∈ dom 𝑓) → (𝑠𝑘) ⊆ (𝑓𝑘))
26 fvex 6677 . . . . . . . . . 10 (𝑠𝑘) ∈ V
2713, 26iunex 7663 . . . . . . . . 9 𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ V
28 simpll 765 . . . . . . . . . 10 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → CHOICE)
29 acacni 9560 . . . . . . . . . 10 ((CHOICE ∧ dom 𝑓 ∈ V) → AC dom 𝑓 = V)
3028, 13, 29sylancl 588 . . . . . . . . 9 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → AC dom 𝑓 = V)
3127, 30eleqtrrid 2920 . . . . . . . 8 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → 𝑘 ∈ dom 𝑓(𝑠𝑘) ∈ AC dom 𝑓)
3211, 14, 17, 25, 31ptclsg 22217 . . . . . . 7 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t‘(𝑘 ∈ dom 𝑓 ↦ (𝑓𝑘))))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3310, 32eqtrd 2856 . . . . . 6 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑥 ∈ dom 𝑓𝒫 (𝑓𝑥)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
345, 33sylan2b 595 . . . . 5 (((CHOICE𝑓:dom 𝑓⟶Top) ∧ 𝑠X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3534ralrimiva 3182 . . . 4 ((CHOICE𝑓:dom 𝑓⟶Top) → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)))
3635ex 415 . . 3 (CHOICE → (𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
3736alrimiv 1924 . 2 (CHOICE → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
38 vex 3497 . . . . . . . 8 𝑔 ∈ V
3938dmex 7610 . . . . . . 7 dom 𝑔 ∈ V
4039a1i 11 . . . . . 6 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → dom 𝑔 ∈ V)
41 fvex 6677 . . . . . . 7 (𝑔𝑥) ∈ V
4241a1i 11 . . . . . 6 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ V)
43 simplrr 776 . . . . . . . 8 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ∅ ∉ ran 𝑔)
44 df-nel 3124 . . . . . . . 8 (∅ ∉ ran 𝑔 ↔ ¬ ∅ ∈ ran 𝑔)
4543, 44sylib 220 . . . . . . 7 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ¬ ∅ ∈ ran 𝑔)
46 funforn 6591 . . . . . . . . . . . 12 (Fun 𝑔𝑔:dom 𝑔onto→ran 𝑔)
47 fof 6584 . . . . . . . . . . . 12 (𝑔:dom 𝑔onto→ran 𝑔𝑔:dom 𝑔⟶ran 𝑔)
4846, 47sylbi 219 . . . . . . . . . . 11 (Fun 𝑔𝑔:dom 𝑔⟶ran 𝑔)
4948ad2antrl 726 . . . . . . . . . 10 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔:dom 𝑔⟶ran 𝑔)
5049ffvelrnda 6845 . . . . . . . . 9 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ∈ ran 𝑔)
51 eleq1 2900 . . . . . . . . 9 ((𝑔𝑥) = ∅ → ((𝑔𝑥) ∈ ran 𝑔 ↔ ∅ ∈ ran 𝑔))
5250, 51syl5ibcom 247 . . . . . . . 8 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → ((𝑔𝑥) = ∅ → ∅ ∈ ran 𝑔))
5352necon3bd 3030 . . . . . . 7 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (¬ ∅ ∈ ran 𝑔 → (𝑔𝑥) ≠ ∅))
5445, 53mpd 15 . . . . . 6 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → (𝑔𝑥) ≠ ∅)
55 eqid 2821 . . . . . 6 𝒫 (𝑔𝑥) = 𝒫 (𝑔𝑥)
56 eqid 2821 . . . . . 6 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}
57 eqid 2821 . . . . . 6 (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})) = (∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
58 fveq1 6663 . . . . . . . . . . 11 (𝑠 = 𝑔 → (𝑠𝑘) = (𝑔𝑘))
5958ixpeq2dv 8471 . . . . . . . . . 10 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔(𝑠𝑘) = X𝑘 ∈ dom 𝑔(𝑔𝑘))
60 fveq2 6664 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑔𝑘) = (𝑔𝑥))
6160cbvixpv 8473 . . . . . . . . . 10 X𝑘 ∈ dom 𝑔(𝑔𝑘) = X𝑥 ∈ dom 𝑔(𝑔𝑥)
6259, 61syl6eq 2872 . . . . . . . . 9 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔(𝑠𝑘) = X𝑥 ∈ dom 𝑔(𝑔𝑥))
6362fveq2d 6668 . . . . . . . 8 (𝑠 = 𝑔 → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)))
6458fveq2d 6668 . . . . . . . . . 10 (𝑠 = 𝑔 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)))
6564ixpeq2dv 8471 . . . . . . . . 9 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)))
6660unieqd 4841 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥 (𝑔𝑘) = (𝑔𝑥))
6766pweqd 4543 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑥 → 𝒫 (𝑔𝑘) = 𝒫 (𝑔𝑥))
6867sneqd 4572 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → {𝒫 (𝑔𝑘)} = {𝒫 (𝑔𝑥)})
6960, 68uneq12d 4139 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
7069pweqd 4543 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
7167eleq1d 2897 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝒫 (𝑔𝑘) ∈ 𝑦 ↔ 𝒫 (𝑔𝑥) ∈ 𝑦))
7269eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ 𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})))
7371, 72imbi12d 347 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → ((𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})) ↔ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))))
7470, 73rabeqbidv 3485 . . . . . . . . . . . 12 (𝑘 = 𝑥 → {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})
7574fveq2d 6668 . . . . . . . . . . 11 (𝑘 = 𝑥 → (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}) = (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
7675, 60fveq12d 6671 . . . . . . . . . 10 (𝑘 = 𝑥 → ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
7776cbvixpv 8473 . . . . . . . . 9 X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑔𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))
7865, 77syl6eq 2872 . . . . . . . 8 (𝑠 = 𝑔X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
7963, 78eqeq12d 2837 . . . . . . 7 (𝑠 = 𝑔 → (((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)) ↔ ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥))))
80 simpl 485 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
81 snex 5323 . . . . . . . . . . . . 13 {𝒫 (𝑔𝑥)} ∈ V
8241, 81unex 7463 . . . . . . . . . . . 12 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V
83 ssun2 4148 . . . . . . . . . . . . 13 {𝒫 (𝑔𝑥)} ⊆ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})
8441uniex 7461 . . . . . . . . . . . . . . 15 (𝑔𝑥) ∈ V
8584pwex 5273 . . . . . . . . . . . . . 14 𝒫 (𝑔𝑥) ∈ V
8685snid 4594 . . . . . . . . . . . . 13 𝒫 (𝑔𝑥) ∈ {𝒫 (𝑔𝑥)}
8783, 86sselii 3963 . . . . . . . . . . . 12 𝒫 (𝑔𝑥) ∈ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})
88 epttop 21611 . . . . . . . . . . . 12 ((((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V ∧ 𝒫 (𝑔𝑥) ∈ ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})) → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ (TopOn‘((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})))
8982, 87, 88mp2an 690 . . . . . . . . . . 11 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ (TopOn‘((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))
9089topontopi 21517 . . . . . . . . . 10 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ Top
9190a1i 11 . . . . . . . . 9 (((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) ∧ 𝑥 ∈ dom 𝑔) → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ Top)
9291fmpttd 6873 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top)
9339mptex 6980 . . . . . . . . 9 (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∈ V
94 id 22 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → 𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
95 dmeq 5766 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → dom 𝑓 = dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))
9682pwex 5273 . . . . . . . . . . . . . 14 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∈ V
9796rabex 5227 . . . . . . . . . . . . 13 {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} ∈ V
98 eqid 2821 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})
9997, 98dmmpti 6486 . . . . . . . . . . . 12 dom (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) = dom 𝑔
10095, 99syl6eq 2872 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → dom 𝑓 = dom 𝑔)
10194, 100feq12d 6496 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (𝑓:dom 𝑓⟶Top ↔ (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top))
102100ixpeq1d 8467 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 (𝑓𝑘))
103 fveq1 6663 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (𝑓𝑘) = ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘𝑘))
104 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑘 → (𝑔𝑥) = (𝑔𝑘))
105104unieqd 4841 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑘 (𝑔𝑥) = (𝑔𝑘))
106105pweqd 4543 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑘 → 𝒫 (𝑔𝑥) = 𝒫 (𝑔𝑘))
107106sneqd 4572 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑘 → {𝒫 (𝑔𝑥)} = {𝒫 (𝑔𝑘)})
108104, 107uneq12d 4139 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
109108pweqd 4543 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) = 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
110106eleq1d 2897 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝒫 (𝑔𝑥) ∈ 𝑦 ↔ 𝒫 (𝑔𝑘) ∈ 𝑦))
111108eqeq2d 2832 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑘 → (𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ↔ 𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
112110, 111imbi12d 347 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘 → ((𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)})) ↔ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))))
113109, 112rabeqbidv 3485 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑘 → {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))} = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
114 fvex 6677 . . . . . . . . . . . . . . . . . . . . 21 (𝑔𝑘) ∈ V
115 snex 5323 . . . . . . . . . . . . . . . . . . . . 21 {𝒫 (𝑔𝑘)} ∈ V
116114, 115unex 7463 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V
117116pwex 5273 . . . . . . . . . . . . . . . . . . 19 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V
118117rabex 5227 . . . . . . . . . . . . . . . . . 18 {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ V
119113, 98, 118fvmpt 6762 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ dom 𝑔 → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
120103, 119sylan9eq 2876 . . . . . . . . . . . . . . . 16 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
121120unieqd 4841 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})
122 ssun2 4148 . . . . . . . . . . . . . . . . . 18 {𝒫 (𝑔𝑘)} ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
123114uniex 7461 . . . . . . . . . . . . . . . . . . . 20 (𝑔𝑘) ∈ V
124123pwex 5273 . . . . . . . . . . . . . . . . . . 19 𝒫 (𝑔𝑘) ∈ V
125124snid 4594 . . . . . . . . . . . . . . . . . 18 𝒫 (𝑔𝑘) ∈ {𝒫 (𝑔𝑘)}
126122, 125sselii 3963 . . . . . . . . . . . . . . . . 17 𝒫 (𝑔𝑘) ∈ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
127 epttop 21611 . . . . . . . . . . . . . . . . 17 ((((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∈ V ∧ 𝒫 (𝑔𝑘) ∈ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})) → {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ (TopOn‘((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
128116, 126, 127mp2an 690 . . . . . . . . . . . . . . . 16 {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))} ∈ (TopOn‘((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
129128toponunii 21518 . . . . . . . . . . . . . . 15 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) = {𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}
130121, 129syl6eqr 2874 . . . . . . . . . . . . . 14 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (𝑓𝑘) = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
131130pweqd 4543 . . . . . . . . . . . . 13 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → 𝒫 (𝑓𝑘) = 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
132131ixpeq2dva 8470 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑔𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
133102, 132eqtrd 2856 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘) = X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
134 2fveq3 6669 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (cls‘(∏t𝑓)) = (cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}))))
135100ixpeq1d 8467 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓(𝑠𝑘) = X𝑘 ∈ dom 𝑔(𝑠𝑘))
136134, 135fveq12d 6671 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → ((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)))
137100ixpeq1d 8467 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘(𝑓𝑘))‘(𝑠𝑘)))
138120fveq2d 6668 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → (cls‘(𝑓𝑘)) = (cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))}))
139138fveq1d 6666 . . . . . . . . . . . . . 14 ((𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) ∧ 𝑘 ∈ dom 𝑔) → ((cls‘(𝑓𝑘))‘(𝑠𝑘)) = ((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
140139ixpeq2dva 8470 . . . . . . . . . . . . 13 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑔((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
141137, 140eqtrd 2856 . . . . . . . . . . . 12 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
142136, 141eqeq12d 2837 . . . . . . . . . . 11 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) ↔ ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
143133, 142raleqbidv 3401 . . . . . . . . . 10 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → (∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘)) ↔ ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
144101, 143imbi12d 347 . . . . . . . . 9 (𝑓 = (𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}) → ((𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ↔ ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))))
14593, 144spcv 3605 . . . . . . . 8 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ((𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))}):dom 𝑔⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘))))
14680, 92, 145sylc 65 . . . . . . 7 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ∀𝑠X 𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑘 ∈ dom 𝑔(𝑠𝑘)) = X𝑘 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ∣ (𝒫 (𝑔𝑘) ∈ 𝑦𝑦 = ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))})‘(𝑠𝑘)))
147 simprl 769 . . . . . . . . 9 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → Fun 𝑔)
148147funfnd 6380 . . . . . . . 8 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔 Fn dom 𝑔)
149 ssun1 4147 . . . . . . . . . 10 (𝑔𝑘) ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
150114elpw 4545 . . . . . . . . . 10 ((𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ (𝑔𝑘) ⊆ ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
151149, 150mpbir 233 . . . . . . . . 9 (𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
152151rgenw 3150 . . . . . . . 8 𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})
15338elixp 8462 . . . . . . . 8 (𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}) ↔ (𝑔 Fn dom 𝑔 ∧ ∀𝑘 ∈ dom 𝑔(𝑔𝑘) ∈ 𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)})))
154148, 152, 153sylanblrc 592 . . . . . . 7 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → 𝑔X𝑘 ∈ dom 𝑔𝒫 ((𝑔𝑘) ∪ {𝒫 (𝑔𝑘)}))
15579, 146, 154rspcdva 3624 . . . . . 6 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → ((cls‘(∏t‘(𝑥 ∈ dom 𝑔 ↦ {𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})))‘X𝑥 ∈ dom 𝑔(𝑔𝑥)) = X𝑥 ∈ dom 𝑔((cls‘{𝑦 ∈ 𝒫 ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}) ∣ (𝒫 (𝑔𝑥) ∈ 𝑦𝑦 = ((𝑔𝑥) ∪ {𝒫 (𝑔𝑥)}))})‘(𝑔𝑥)))
15640, 42, 54, 55, 56, 57, 155dfac14lem 22219 . . . . 5 ((∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) ∧ (Fun 𝑔 ∧ ∅ ∉ ran 𝑔)) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅)
157156ex 415 . . . 4 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
158157alrimiv 1924 . . 3 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
159 dfac9 9556 . . 3 (CHOICE ↔ ∀𝑔((Fun 𝑔 ∧ ∅ ∉ ran 𝑔) → X𝑥 ∈ dom 𝑔(𝑔𝑥) ≠ ∅))
160158, 159sylibr 236 . 2 (∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))) → CHOICE)
16137, 160impbii 211 1 (CHOICE ↔ ∀𝑓(𝑓:dom 𝑓⟶Top → ∀𝑠X 𝑘 ∈ dom 𝑓𝒫 (𝑓𝑘)((cls‘(∏t𝑓))‘X𝑘 ∈ dom 𝑓(𝑠𝑘)) = X𝑘 ∈ dom 𝑓((cls‘(𝑓𝑘))‘(𝑠𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wcel 2110  wne 3016  wnel 3123  wral 3138  {crab 3142  Vcvv 3494  cun 3933  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   cuni 4831   ciun 4911  cmpt 5138  dom cdm 5549  ran crn 5550  Fun wfun 6343   Fn wfn 6344  wf 6345  ontowfo 6347  cfv 6349  Xcixp 8455  AC wacn 9361  CHOICEwac 9535  tcpt 16706  Topctop 21495  TopOnctopon 21512  clsccl 21620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-fin 8507  df-fi 8869  df-card 9362  df-acn 9365  df-ac 9536  df-topgen 16711  df-pt 16712  df-top 21496  df-topon 21513  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator