MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac2b Structured version   Visualization version   GIF version

Theorem dfac2b 9550
Description: Axiom of Choice (first form) of [Enderton] p. 49 implies our Axiom of Choice (in the form of ac3 9878). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elneq 9056 and preleq 9073 that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a 9549.) (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 16-Jun-2022.)
Assertion
Ref Expression
dfac2b (CHOICE → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem dfac2b
Dummy variables 𝑓 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfac3 9541 . 2 (CHOICE ↔ ∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
2 nfra1 3219 . . . . . 6 𝑧𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)
3 rsp 3205 . . . . . . . . . . . 12 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑧𝑥 → (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)))
4 equid 2015 . . . . . . . . . . . . . . . . . 18 𝑧 = 𝑧
5 neeq1 3078 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 ≠ ∅ ↔ 𝑧 ≠ ∅))
6 eqeq1 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → (𝑢 = 𝑧𝑧 = 𝑧))
75, 6anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑧 → ((𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) ↔ (𝑧 ≠ ∅ ∧ 𝑧 = 𝑧)))
87rspcev 3622 . . . . . . . . . . . . . . . . . 18 ((𝑧𝑥 ∧ (𝑧 ≠ ∅ ∧ 𝑧 = 𝑧)) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧))
94, 8mpanr2 702 . . . . . . . . . . . . . . . . 17 ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧))
10 fveq2 6664 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑧 → (𝑓𝑢) = (𝑓𝑧))
1110preq1d 4668 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → {(𝑓𝑢), 𝑢} = {(𝑓𝑧), 𝑢})
12 preq2 4663 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = 𝑧 → {(𝑓𝑧), 𝑢} = {(𝑓𝑧), 𝑧})
1311, 12eqtr2d 2857 . . . . . . . . . . . . . . . . . . 19 (𝑢 = 𝑧 → {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢})
1413anim2i 618 . . . . . . . . . . . . . . . . . 18 ((𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) → (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
1514reximi 3243 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑢 = 𝑧) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
169, 15syl 17 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
17 prex 5324 . . . . . . . . . . . . . . . . 17 {(𝑓𝑧), 𝑧} ∈ V
18 eqeq1 2825 . . . . . . . . . . . . . . . . . . 19 (𝑔 = {(𝑓𝑧), 𝑧} → (𝑔 = {(𝑓𝑢), 𝑢} ↔ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
1918anbi2d 630 . . . . . . . . . . . . . . . . . 18 (𝑔 = {(𝑓𝑧), 𝑧} → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢})))
2019rexbidv 3297 . . . . . . . . . . . . . . . . 17 (𝑔 = {(𝑓𝑧), 𝑧} → (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢})))
2117, 20elab 3666 . . . . . . . . . . . . . . . 16 ({(𝑓𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ {(𝑓𝑧), 𝑧} = {(𝑓𝑢), 𝑢}))
2216, 21sylibr 236 . . . . . . . . . . . . . . 15 ((𝑧𝑥𝑧 ≠ ∅) → {(𝑓𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})})
23 vex 3497 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
2423prid2 4692 . . . . . . . . . . . . . . . 16 𝑧 ∈ {(𝑓𝑧), 𝑧}
25 fvex 6677 . . . . . . . . . . . . . . . . 17 (𝑓𝑧) ∈ V
2625prid1 4691 . . . . . . . . . . . . . . . 16 (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧}
2724, 26pm3.2i 473 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑓𝑧), 𝑧} ∧ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧})
28 eleq2 2901 . . . . . . . . . . . . . . . . 17 (𝑣 = {(𝑓𝑧), 𝑧} → (𝑧𝑣𝑧 ∈ {(𝑓𝑧), 𝑧}))
29 eleq2 2901 . . . . . . . . . . . . . . . . 17 (𝑣 = {(𝑓𝑧), 𝑧} → ((𝑓𝑧) ∈ 𝑣 ↔ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧}))
3028, 29anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑣 = {(𝑓𝑧), 𝑧} → ((𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣) ↔ (𝑧 ∈ {(𝑓𝑧), 𝑧} ∧ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧})))
3130rspcev 3622 . . . . . . . . . . . . . . 15 (({(𝑓𝑧), 𝑧} ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧 ∈ {(𝑓𝑧), 𝑧} ∧ (𝑓𝑧) ∈ {(𝑓𝑧), 𝑧})) → ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣))
3222, 27, 31sylancl 588 . . . . . . . . . . . . . 14 ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣))
33 eleq1 2900 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑧) → (𝑤𝑧 ↔ (𝑓𝑧) ∈ 𝑧))
34 eleq1 2900 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝑓𝑧) → (𝑤𝑣 ↔ (𝑓𝑧) ∈ 𝑣))
3534anbi2d 630 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝑓𝑧) → ((𝑧𝑣𝑤𝑣) ↔ (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣)))
3635rexbidv 3297 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑓𝑧) → (∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣)))
3733, 36anbi12d 632 . . . . . . . . . . . . . . 15 (𝑤 = (𝑓𝑧) → ((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ↔ ((𝑓𝑧) ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣))))
3825, 37spcev 3606 . . . . . . . . . . . . . 14 (((𝑓𝑧) ∈ 𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣 ∧ (𝑓𝑧) ∈ 𝑣)) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
3932, 38sylan2 594 . . . . . . . . . . . . 13 (((𝑓𝑧) ∈ 𝑧 ∧ (𝑧𝑥𝑧 ≠ ∅)) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
4039ex 415 . . . . . . . . . . . 12 ((𝑓𝑧) ∈ 𝑧 → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
413, 40syl8 76 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑧𝑥 → (𝑧 ≠ ∅ → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))))
4241impd 413 . . . . . . . . . 10 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))))
4342pm2.43d 53 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → ∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
44 df-rex 3144 . . . . . . . . . . . . 13 (∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ ∃𝑣(𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧𝑣𝑤𝑣)))
45 vex 3497 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
46 eqeq1 2825 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 = 𝑣 → (𝑔 = {(𝑓𝑢), 𝑢} ↔ 𝑣 = {(𝑓𝑢), 𝑢}))
4746anbi2d 630 . . . . . . . . . . . . . . . . . . . 20 (𝑔 = 𝑣 → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢})))
4847rexbidv 3297 . . . . . . . . . . . . . . . . . . 19 (𝑔 = 𝑣 → (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢})))
4945, 48elab 3666 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ↔ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}))
50 neeq1 3078 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑢 → (𝑧 ≠ ∅ ↔ 𝑢 ≠ ∅))
51 fveq2 6664 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑢 → (𝑓𝑧) = (𝑓𝑢))
5251eleq1d 2897 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑧))
53 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑢 → ((𝑓𝑢) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
5452, 53bitrd 281 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = 𝑢 → ((𝑓𝑧) ∈ 𝑧 ↔ (𝑓𝑢) ∈ 𝑢))
5550, 54imbi12d 347 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑢 → ((𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ↔ (𝑢 ≠ ∅ → (𝑓𝑢) ∈ 𝑢)))
5655rspccv 3619 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑓𝑢) ∈ 𝑢)))
57 elneq 9056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑤𝑧𝑤𝑧)
5857neneqd 3021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑤𝑧 → ¬ 𝑤 = 𝑧)
59 vex 3497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑤 ∈ V
60 neqne 3024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 𝑤 = 𝑧𝑤𝑧)
61 prel12g 4787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑤 ∈ V ∧ 𝑧 ∈ V ∧ 𝑤𝑧) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢})))
6259, 23, 60, 61mp3an12i 1461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑤 = 𝑧 → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢})))
63 ancom 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑤𝑣𝑧𝑣) ↔ (𝑧𝑣𝑤𝑣))
64 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = {(𝑓𝑢), 𝑢} → (𝑤𝑣𝑤 ∈ {(𝑓𝑢), 𝑢}))
65 eleq2 2901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑣 = {(𝑓𝑢), 𝑢} → (𝑧𝑣𝑧 ∈ {(𝑓𝑢), 𝑢}))
6664, 65anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑤𝑣𝑧𝑣) ↔ (𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢})))
6763, 66syl5rbbr 288 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑤 ∈ {(𝑓𝑢), 𝑢} ∧ 𝑧 ∈ {(𝑓𝑢), 𝑢}) ↔ (𝑧𝑣𝑤𝑣)))
6862, 67sylan9bbr 513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑣 = {(𝑓𝑢), 𝑢} ∧ ¬ 𝑤 = 𝑧) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑧𝑣𝑤𝑣)))
6958, 68sylan2 594 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑣 = {(𝑓𝑢), 𝑢} ∧ 𝑤𝑧) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑧𝑣𝑤𝑣)))
7069adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑣 = {(𝑓𝑢), 𝑢} ∧ (𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢)) → ({𝑤, 𝑧} = {(𝑓𝑢), 𝑢} ↔ (𝑧𝑣𝑤𝑣)))
7170pm5.32da 581 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = {(𝑓𝑢), 𝑢} → (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ {𝑤, 𝑧} = {(𝑓𝑢), 𝑢}) ↔ ((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ (𝑧𝑣𝑤𝑣))))
7223preleq 9073 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ {𝑤, 𝑧} = {(𝑓𝑢), 𝑢}) → (𝑤 = (𝑓𝑢) ∧ 𝑧 = 𝑢))
7371, 72syl6bir 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣 = {(𝑓𝑢), 𝑢} → (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ (𝑧𝑣𝑤𝑣)) → (𝑤 = (𝑓𝑢) ∧ 𝑧 = 𝑢)))
7451eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 = 𝑢 → (𝑤 = (𝑓𝑧) ↔ 𝑤 = (𝑓𝑢)))
7574biimparc 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 = (𝑓𝑢) ∧ 𝑧 = 𝑢) → 𝑤 = (𝑓𝑧))
7673, 75syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = {(𝑓𝑢), 𝑢} → (((𝑤𝑧 ∧ (𝑓𝑢) ∈ 𝑢) ∧ (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
7776exp4c 435 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = {(𝑓𝑢), 𝑢} → (𝑤𝑧 → ((𝑓𝑢) ∈ 𝑢 → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
7877com13 88 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑓𝑢) ∈ 𝑢 → (𝑤𝑧 → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
7956, 78syl8 76 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑤𝑧 → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))))
8079com4r 94 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤𝑧 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))))
8180imp 409 . . . . . . . . . . . . . . . . . . . . 21 ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑢𝑥 → (𝑢 ≠ ∅ → (𝑣 = {(𝑓𝑢), 𝑢} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧))))))
8281imp4a 425 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → (𝑢𝑥 → ((𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8382com3l 89 . . . . . . . . . . . . . . . . . . 19 (𝑢𝑥 → ((𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}) → ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8483rexlimiv 3280 . . . . . . . . . . . . . . . . . 18 (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑣 = {(𝑓𝑢), 𝑢}) → ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧))))
8549, 84sylbi 219 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → ((𝑤𝑧 ∧ ∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧)) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧))))
8685expd 418 . . . . . . . . . . . . . . . 16 (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (𝑤𝑧 → (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8786com13 88 . . . . . . . . . . . . . . 15 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑤𝑧 → (𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → ((𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))))
8887imp4b 424 . . . . . . . . . . . . . 14 ((∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤𝑧) → ((𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
8988exlimdv 1930 . . . . . . . . . . . . 13 ((∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤𝑧) → (∃𝑣(𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∧ (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
9044, 89syl5bi 244 . . . . . . . . . . . 12 ((∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) ∧ 𝑤𝑧) → (∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) → 𝑤 = (𝑓𝑧)))
9190expimpd 456 . . . . . . . . . . 11 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
9291alrimiv 1924 . . . . . . . . . 10 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑤((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)))
93 mo2icl 3704 . . . . . . . . . 10 (∀𝑤((𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → 𝑤 = (𝑓𝑧)) → ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
9492, 93syl 17 . . . . . . . . 9 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
9543, 94jctird 529 . . . . . . . 8 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → (∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ∧ ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))))
96 df-reu 3145 . . . . . . . . 9 (∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ ∃!𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
97 df-eu 2650 . . . . . . . . 9 (∃!𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ↔ (∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ∧ ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
9896, 97bitri 277 . . . . . . . 8 (∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣) ↔ (∃𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) ∧ ∃*𝑤(𝑤𝑧 ∧ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
9995, 98syl6ibr 254 . . . . . . 7 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ((𝑧𝑥𝑧 ≠ ∅) → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
10099expd 418 . . . . . 6 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → (𝑧𝑥 → (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
1012, 100ralrimi 3216 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
102 vex 3497 . . . . . . . . . . 11 𝑓 ∈ V
103102rnex 7611 . . . . . . . . . 10 ran 𝑓 ∈ V
104 p0ex 5276 . . . . . . . . . 10 {∅} ∈ V
105103, 104unex 7463 . . . . . . . . 9 (ran 𝑓 ∪ {∅}) ∈ V
106 vex 3497 . . . . . . . . 9 𝑥 ∈ V
107105, 106unex 7463 . . . . . . . 8 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∈ V
108107pwex 5273 . . . . . . 7 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∈ V
109 ssun1 4147 . . . . . . . . . . . . . 14 (ran 𝑓 ∪ {∅}) ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)
110 fvrn0 6692 . . . . . . . . . . . . . 14 (𝑓𝑢) ∈ (ran 𝑓 ∪ {∅})
111109, 110sselii 3963 . . . . . . . . . . . . 13 (𝑓𝑢) ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)
112 elun2 4152 . . . . . . . . . . . . 13 (𝑢𝑥𝑢 ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
113 prssi 4747 . . . . . . . . . . . . 13 (((𝑓𝑢) ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ∧ 𝑢 ∈ ((ran 𝑓 ∪ {∅}) ∪ 𝑥)) → {(𝑓𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
114111, 112, 113sylancr 589 . . . . . . . . . . . 12 (𝑢𝑥 → {(𝑓𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
115 prex 5324 . . . . . . . . . . . . 13 {(𝑓𝑢), 𝑢} ∈ V
116115elpw 4545 . . . . . . . . . . . 12 ({(𝑓𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ↔ {(𝑓𝑢), 𝑢} ⊆ ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
117114, 116sylibr 236 . . . . . . . . . . 11 (𝑢𝑥 → {(𝑓𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
118 eleq1 2900 . . . . . . . . . . 11 (𝑔 = {(𝑓𝑢), 𝑢} → (𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥) ↔ {(𝑓𝑢), 𝑢} ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)))
119117, 118syl5ibrcom 249 . . . . . . . . . 10 (𝑢𝑥 → (𝑔 = {(𝑓𝑢), 𝑢} → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)))
120119adantld 493 . . . . . . . . 9 (𝑢𝑥 → ((𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)))
121120rexlimiv 3280 . . . . . . . 8 (∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢}) → 𝑔 ∈ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥))
122121abssi 4045 . . . . . . 7 {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ⊆ 𝒫 ((ran 𝑓 ∪ {∅}) ∪ 𝑥)
123108, 122ssexi 5218 . . . . . 6 {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} ∈ V
124 rexeq 3406 . . . . . . . . 9 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (∃𝑣𝑦 (𝑧𝑣𝑤𝑣) ↔ ∃𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
125124reubidv 3389 . . . . . . . 8 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣) ↔ ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)))
126125imbi2d 343 . . . . . . 7 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → ((𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ↔ (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
127126ralbidv 3197 . . . . . 6 (𝑦 = {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} → (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)) ↔ ∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣))))
128123, 127spcev 3606 . . . . 5 (∀𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣 ∈ {𝑔 ∣ ∃𝑢𝑥 (𝑢 ≠ ∅ ∧ 𝑔 = {(𝑓𝑢), 𝑢})} (𝑧𝑣𝑤𝑣)) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
129101, 128syl 17 . . . 4 (∀𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
130129exlimiv 1927 . . 3 (∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∃𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
131130alimi 1808 . 2 (∀𝑥𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧) → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
1321, 131sylbi 219 1 (CHOICE → ∀𝑥𝑦𝑧𝑥 (𝑧 ≠ ∅ → ∃!𝑤𝑧𝑣𝑦 (𝑧𝑣𝑤𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1531   = wceq 1533  wex 1776  wcel 2110  ∃*wmo 2616  ∃!weu 2649  {cab 2799  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  Vcvv 3494  cun 3933  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560  {cpr 4562  ran crn 5550  cfv 6349  CHOICEwac 9535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-reg 9050
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-eprel 5459  df-fr 5508  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-fv 6357  df-ac 9536
This theorem is referenced by:  dfac2  9551
  Copyright terms: Public domain W3C validator