Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem5 Structured version   Visualization version   GIF version

Theorem dfac5lem5 8894
 Description: Lemma for dfac5 8895. (Contributed by NM, 12-Apr-2004.)
Hypotheses
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
dfac5lem.2 𝐵 = ( 𝐴𝑦)
dfac5lem.3 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
Assertion
Ref Expression
dfac5lem5 (𝜑 → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
Distinct variable groups:   𝑥,𝑓,𝑧,𝑦,𝑤,𝑣,𝑢,𝑡,   𝑧,𝐵,𝑤,𝑓   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,)   𝐴(𝑣,𝑢,𝑡,𝑓,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑡,)

Proof of Theorem dfac5lem5
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dfac5lem.1 . . 3 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
2 dfac5lem.2 . . 3 𝐵 = ( 𝐴𝑦)
3 dfac5lem.3 . . 3 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
41, 2, 3dfac5lem4 8893 . 2 (𝜑 → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
5 simpr 477 . . . . . . . . . 10 ((𝑤 ≠ ∅ ∧ 𝑤) → 𝑤)
65a1i 11 . . . . . . . . 9 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → 𝑤))
7 ineq1 3785 . . . . . . . . . . . . 13 (𝑧 = ({𝑤} × 𝑤) → (𝑧𝑦) = (({𝑤} × 𝑤) ∩ 𝑦))
87eleq2d 2684 . . . . . . . . . . . 12 (𝑧 = ({𝑤} × 𝑤) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
98eubidv 2489 . . . . . . . . . . 11 (𝑧 = ({𝑤} × 𝑤) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
109rspccv 3292 . . . . . . . . . 10 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → (({𝑤} × 𝑤) ∈ 𝐴 → ∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
111dfac5lem3 8892 . . . . . . . . . 10 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
12 dfac5lem1 8890 . . . . . . . . . 10 (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
1310, 11, 123imtr3g 284 . . . . . . . . 9 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
146, 13jcad 555 . . . . . . . 8 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → (𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))))
152eleq2i 2690 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑔⟩ ∈ ( 𝐴𝑦))
16 elin 3774 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ ( 𝐴𝑦) ↔ (⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
171dfac5lem2 8891 . . . . . . . . . . . . 13 (⟨𝑤, 𝑔⟩ ∈ 𝐴 ↔ (𝑤𝑔𝑤))
1817anbi1i 730 . . . . . . . . . . . 12 ((⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ ((𝑤𝑔𝑤) ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
19 anass 680 . . . . . . . . . . . 12 (((𝑤𝑔𝑤) ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2018, 19bitri 264 . . . . . . . . . . 11 ((⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2115, 16, 203bitri 286 . . . . . . . . . 10 (⟨𝑤, 𝑔⟩ ∈ 𝐵 ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2221eubii 2491 . . . . . . . . 9 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 ↔ ∃!𝑔(𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
23 euanv 2533 . . . . . . . . 9 (∃!𝑔(𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ (𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2422, 23bitr2i 265 . . . . . . . 8 ((𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵)
2514, 24syl6ib 241 . . . . . . 7 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵))
26 euex 2493 . . . . . . . 8 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → ∃𝑔𝑤, 𝑔⟩ ∈ 𝐵)
27 nfeu1 2479 . . . . . . . . . 10 𝑔∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵
28 nfv 1840 . . . . . . . . . 10 𝑔(𝐵𝑤) ∈ 𝑤
2927, 28nfim 1822 . . . . . . . . 9 𝑔(∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)
3021simprbi 480 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
3130simpld 475 . . . . . . . . . 10 (⟨𝑤, 𝑔⟩ ∈ 𝐵𝑔𝑤)
32 tz6.12 6168 . . . . . . . . . . . . 13 ((⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵) → (𝐵𝑤) = 𝑔)
3332eleq1d 2683 . . . . . . . . . . . 12 ((⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵) → ((𝐵𝑤) ∈ 𝑤𝑔𝑤))
3433biimparc 504 . . . . . . . . . . 11 ((𝑔𝑤 ∧ (⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵)) → (𝐵𝑤) ∈ 𝑤)
3534exp32 630 . . . . . . . . . 10 (𝑔𝑤 → (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)))
3631, 35mpcom 38 . . . . . . . . 9 (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤))
3729, 36exlimi 2084 . . . . . . . 8 (∃𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤))
3826, 37mpcom 38 . . . . . . 7 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)
3925, 38syl6 35 . . . . . 6 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → (𝐵𝑤) ∈ 𝑤))
4039expcomd 454 . . . . 5 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → (𝑤 → (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4140ralrimiv 2959 . . . 4 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤))
42 vex 3189 . . . . . . 7 𝑦 ∈ V
4342inex2 4760 . . . . . 6 ( 𝐴𝑦) ∈ V
442, 43eqeltri 2694 . . . . 5 𝐵 ∈ V
45 fveq1 6147 . . . . . . . 8 (𝑓 = 𝐵 → (𝑓𝑤) = (𝐵𝑤))
4645eleq1d 2683 . . . . . . 7 (𝑓 = 𝐵 → ((𝑓𝑤) ∈ 𝑤 ↔ (𝐵𝑤) ∈ 𝑤))
4746imbi2d 330 . . . . . 6 (𝑓 = 𝐵 → ((𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4847ralbidv 2980 . . . . 5 (𝑓 = 𝐵 → (∀𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) ↔ ∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4944, 48spcev 3286 . . . 4 (∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
5041, 49syl 17 . . 3 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
5150exlimiv 1855 . 2 (∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
524, 51syl 17 1 (𝜑 → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480  ∃wex 1701   ∈ wcel 1987  ∃!weu 2469  {cab 2607   ≠ wne 2790  ∀wral 2907  ∃wrex 2908  Vcvv 3186   ∩ cin 3554  ∅c0 3891  {csn 4148  ⟨cop 4154  ∪ cuni 4402   × cxp 5072  ‘cfv 5847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-iota 5810  df-fv 5855 This theorem is referenced by:  dfac5  8895
 Copyright terms: Public domain W3C validator