MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac8a Structured version   Visualization version   GIF version

Theorem dfac8a 8797
Description: Numeration theorem: every set with a choice function on its power set is numerable. With AC, this reduces to the statement that every set is numerable. Similar to Theorem 10.3 of [TakeutiZaring] p. 84. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 5-Jan-2013.)
Assertion
Ref Expression
dfac8a (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Distinct variable groups:   𝑦,,𝐴   𝐵,
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem dfac8a
Dummy variables 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . 2 recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣)))) = recs((𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))))
2 rneq 5311 . . . . 5 (𝑣 = 𝑓 → ran 𝑣 = ran 𝑓)
32difeq2d 3706 . . . 4 (𝑣 = 𝑓 → (𝐴 ∖ ran 𝑣) = (𝐴 ∖ ran 𝑓))
43fveq2d 6152 . . 3 (𝑣 = 𝑓 → (‘(𝐴 ∖ ran 𝑣)) = (‘(𝐴 ∖ ran 𝑓)))
54cbvmptv 4710 . 2 (𝑣 ∈ V ↦ (‘(𝐴 ∖ ran 𝑣))) = (𝑓 ∈ V ↦ (‘(𝐴 ∖ ran 𝑓)))
61, 5dfac8alem 8796 1 (𝐴𝐵 → (∃𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝑦) ∈ 𝑦) → 𝐴 ∈ dom card))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1701  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cdif 3552  c0 3891  𝒫 cpw 4130  cmpt 4673  dom cdm 5074  ran crn 5075  cfv 5847  recscrecs 7412  cardccrd 8705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-wrecs 7352  df-recs 7413  df-en 7900  df-card 8709
This theorem is referenced by:  ween  8802  acnnum  8819  dfac8  8901
  Copyright terms: Public domain W3C validator