MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfceil2 Structured version   Visualization version   GIF version

Theorem dfceil2 12577
Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018.)
Assertion
Ref Expression
dfceil2 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Distinct variable group:   𝑥,𝑦

Proof of Theorem dfceil2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ceil 12531 . 2 ⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
2 zre 11326 . . . . . . 7 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
3 lenegcon2 10478 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 ≤ -𝑧𝑧 ≤ -𝑥))
4 peano2re 10154 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
54anim2i 592 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
65ancoms 469 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ))
7 ltnegcon1 10474 . . . . . . . . . 10 ((𝑧 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
86, 7syl 17 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -(𝑥 + 1) < 𝑧))
9 recn 9971 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 1cnd 10001 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → 1 ∈ ℂ)
119, 10negdid 10350 . . . . . . . . . . 11 (𝑥 ∈ ℝ → -(𝑥 + 1) = (-𝑥 + -1))
1211adantr 481 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -(𝑥 + 1) = (-𝑥 + -1))
1312breq1d 4628 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-(𝑥 + 1) < 𝑧 ↔ (-𝑥 + -1) < 𝑧))
14 renegcl 10289 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1514adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -𝑥 ∈ ℝ)
16 neg1rr 11070 . . . . . . . . . . . 12 -1 ∈ ℝ
1716a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → -1 ∈ ℝ)
18 simpr 477 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
1915, 17, 18ltaddsubd 10572 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 − -1)))
20 recn 9971 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
21 1cnd 10001 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ → 1 ∈ ℂ)
2220, 21subnegd 10344 . . . . . . . . . . . 12 (𝑧 ∈ ℝ → (𝑧 − -1) = (𝑧 + 1))
2322adantl 482 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 − -1) = (𝑧 + 1))
2423breq2d 4630 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑥 < (𝑧 − -1) ↔ -𝑥 < (𝑧 + 1)))
2519, 24bitrd 268 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((-𝑥 + -1) < 𝑧 ↔ -𝑥 < (𝑧 + 1)))
268, 13, 253bitrd 294 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑧 < (𝑥 + 1) ↔ -𝑥 < (𝑧 + 1)))
273, 26anbi12d 746 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
282, 27sylan2 491 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℤ) → ((𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1)) ↔ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
2928riotabidva 6582 . . . . 5 (𝑥 ∈ ℝ → (𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3029negeqd 10220 . . . 4 (𝑥 ∈ ℝ → -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
31 zbtwnre 11730 . . . . 5 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)))
32 breq2 4622 . . . . . . 7 (𝑦 = -𝑧 → (𝑥𝑦𝑥 ≤ -𝑧))
33 breq1 4621 . . . . . . 7 (𝑦 = -𝑧 → (𝑦 < (𝑥 + 1) ↔ -𝑧 < (𝑥 + 1)))
3432, 33anbi12d 746 . . . . . 6 (𝑦 = -𝑧 → ((𝑥𝑦𝑦 < (𝑥 + 1)) ↔ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3534zriotaneg 11435 . . . . 5 (∃!𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1)) → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
3631, 35syl 17 . . . 4 (𝑥 ∈ ℝ → (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))) = -(𝑧 ∈ ℤ (𝑥 ≤ -𝑧 ∧ -𝑧 < (𝑥 + 1))))
37 flval 12532 . . . . . 6 (-𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3814, 37syl 17 . . . . 5 (𝑥 ∈ ℝ → (⌊‘-𝑥) = (𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
3938negeqd 10220 . . . 4 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = -(𝑧 ∈ ℤ (𝑧 ≤ -𝑥 ∧ -𝑥 < (𝑧 + 1))))
4030, 36, 393eqtr4rd 2671 . . 3 (𝑥 ∈ ℝ → -(⌊‘-𝑥) = (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
4140mpteq2ia 4705 . 2 (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥)) = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
421, 41eqtri 2648 1 ⌈ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑥𝑦𝑦 < (𝑥 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1992  ∃!wreu 2914   class class class wbr 4618  cmpt 4678  cfv 5850  crio 6565  (class class class)co 6605  cr 9880  1c1 9882   + caddc 9884   < clt 10019  cle 10020  cmin 10211  -cneg 10212  cz 11322  cfl 12528  cceil 12529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fl 12530  df-ceil 12531
This theorem is referenced by:  ceilval2  12578
  Copyright terms: Public domain W3C validator