![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfcleq | Structured version Visualization version GIF version |
Description: The same as df-cleq 2644 with the hypothesis removed using the Axiom of Extensionality ax-ext 2631. (Contributed by NM, 15-Sep-1993.) Revised to make use of axext3 2633 instead of ax-ext 2631, so that ax-9 2039 will appear in lists of axioms used by a proof, since df-cleq 2644 implies ax-9 2039 by theorem bj-ax9 33015. We may revisit this in the future. (Revised by NM, 28-Oct-2021.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dfcleq | ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axext3 2633 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
2 | 1 | df-cleq 2644 | 1 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∀wal 1521 = wceq 1523 ∈ wcel 2030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-cleq 2644 |
This theorem is referenced by: cvjust 2646 eqriv 2648 eqrdv 2649 eqeq1d 2653 eqeq1dALT 2654 eleq2d 2716 eleq2dALT 2717 cleqh 2753 nfeqd 2801 eqss 3651 ssequn1 3816 disj3 4054 undif4 4068 vprc 4829 inex1 4832 axpr 4935 zfpair2 4937 sucel 5836 uniex2 6994 brtxpsd3 32128 hfext 32415 onsuct0 32565 bj-abbi 32900 eliminable2a 32966 eliminable2b 32967 eliminable2c 32968 bj-df-cleq 33018 bj-sbeq 33021 bj-sbceqgALT 33022 bj-snsetex 33076 bj-df-v 33141 cover2 33638 releccnveq 34163 rp-fakeinunass 38178 intimag 38265 relexp0eq 38310 ntrneik4w 38715 undif3VD 39432 rnmptpr 39672 uzinico 40105 dvnmul 40476 dvnprodlem3 40481 sge00 40911 sge0resplit 40941 sge0fodjrnlem 40951 hspdifhsp 41151 smfresal 41316 |
Copyright terms: Public domain | W3C validator |