Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfcnv2 Structured version   Visualization version   GIF version

Theorem dfcnv2 29342
Description: Alternative definition of the converse of a relation. (Contributed by Thierry Arnoux, 31-Mar-2018.)
Assertion
Ref Expression
dfcnv2 (ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfcnv2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5467 . 2 Rel 𝑅
2 relxp 5193 . . . 4 Rel ({𝑥} × (𝑅 “ {𝑥}))
32rgenw 2919 . . 3 𝑥𝐴 Rel ({𝑥} × (𝑅 “ {𝑥}))
4 reliun 5205 . . 3 (Rel 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})) ↔ ∀𝑥𝐴 Rel ({𝑥} × (𝑅 “ {𝑥})))
53, 4mpbir 221 . 2 Rel 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥}))
6 vex 3192 . . . . . . . . 9 𝑧 ∈ V
7 vex 3192 . . . . . . . . 9 𝑦 ∈ V
86, 7opeldm 5293 . . . . . . . 8 (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧 ∈ dom 𝑅)
9 df-rn 5090 . . . . . . . 8 ran 𝑅 = dom 𝑅
108, 9syl6eleqr 2709 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧 ∈ ran 𝑅)
11 ssel2 3582 . . . . . . 7 ((ran 𝑅𝐴𝑧 ∈ ran 𝑅) → 𝑧𝐴)
1210, 11sylan2 491 . . . . . 6 ((ran 𝑅𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅) → 𝑧𝐴)
1312ex 450 . . . . 5 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅𝑧𝐴))
1413pm4.71rd 666 . . . 4 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ (𝑧𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅)))
156, 7elimasn 5454 . . . . 5 (𝑦 ∈ (𝑅 “ {𝑧}) ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑅)
1615anbi2i 729 . . . 4 ((𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧})) ↔ (𝑧𝐴 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑅))
1714, 16syl6bbr 278 . . 3 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ (𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧}))))
18 sneq 4163 . . . . 5 (𝑥 = 𝑧 → {𝑥} = {𝑧})
1918imaeq2d 5430 . . . 4 (𝑥 = 𝑧 → (𝑅 “ {𝑥}) = (𝑅 “ {𝑧}))
2019opeliunxp2 5225 . . 3 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})) ↔ (𝑧𝐴𝑦 ∈ (𝑅 “ {𝑧})))
2117, 20syl6bbr 278 . 2 (ran 𝑅𝐴 → (⟨𝑧, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥}))))
221, 5, 21eqrelrdv 5182 1 (ran 𝑅𝐴𝑅 = 𝑥𝐴 ({𝑥} × (𝑅 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wss 3559  {csn 4153  cop 4159   ciun 4490   × cxp 5077  ccnv 5078  dom cdm 5079  ran crn 5080  cima 5082  Rel wrel 5084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-iun 4492  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092
This theorem is referenced by:  gsummpt2co  29589
  Copyright terms: Public domain W3C validator