Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeven2 Structured version   Visualization version   GIF version

Theorem dfeven2 43821
Description: Alternate definition for even numbers. (Contributed by AV, 18-Jun-2020.)
Assertion
Ref Expression
dfeven2 Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}

Proof of Theorem dfeven2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 dfeven4 43810 . 2 Even = {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)}
2 eqcom 2831 . . . . . 6 (𝑧 = (2 · 𝑖) ↔ (2 · 𝑖) = 𝑧)
3 2cnd 11718 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 2 ∈ ℂ)
4 zcn 11989 . . . . . . . . 9 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
54adantl 484 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
63, 5mulcomd 10665 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 · 𝑖) = (𝑖 · 2))
76eqeq1d 2826 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((2 · 𝑖) = 𝑧 ↔ (𝑖 · 2) = 𝑧))
82, 7syl5bb 285 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑧 = (2 · 𝑖) ↔ (𝑖 · 2) = 𝑧))
98rexbidva 3299 . . . 4 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) ↔ ∃𝑖 ∈ ℤ (𝑖 · 2) = 𝑧))
10 2z 12017 . . . . 5 2 ∈ ℤ
11 divides 15612 . . . . 5 ((2 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (2 ∥ 𝑧 ↔ ∃𝑖 ∈ ℤ (𝑖 · 2) = 𝑧))
1210, 11mpan 688 . . . 4 (𝑧 ∈ ℤ → (2 ∥ 𝑧 ↔ ∃𝑖 ∈ ℤ (𝑖 · 2) = 𝑧))
139, 12bitr4d 284 . . 3 (𝑧 ∈ ℤ → (∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖) ↔ 2 ∥ 𝑧))
1413rabbiia 3475 . 2 {𝑧 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑧 = (2 · 𝑖)} = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}
151, 14eqtri 2847 1 Even = {𝑧 ∈ ℤ ∣ 2 ∥ 𝑧}
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3142  {crab 3145   class class class wbr 5069  (class class class)co 7159  cc 10538   · cmul 10545  2c2 11695  cz 11984  cdvds 15610   Even ceven 43796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-z 11985  df-dvds 15611  df-even 43798
This theorem is referenced by:  iseven2  43823
  Copyright terms: Public domain W3C validator