MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff13 Structured version   Visualization version   GIF version

Theorem dff13 7016
Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 29-Oct-1996.)
Assertion
Ref Expression
dff13 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff13
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dff12 6577 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧))
2 ffn 6517 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 vex 3500 . . . . . . . . . . . . . . 15 𝑥 ∈ V
4 vex 3500 . . . . . . . . . . . . . . 15 𝑧 ∈ V
53, 4breldm 5780 . . . . . . . . . . . . . 14 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
6 fndm 6458 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
76eleq2d 2901 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑥 ∈ dom 𝐹𝑥𝐴))
85, 7syl5ib 246 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑥𝐹𝑧𝑥𝐴))
9 vex 3500 . . . . . . . . . . . . . . 15 𝑦 ∈ V
109, 4breldm 5780 . . . . . . . . . . . . . 14 (𝑦𝐹𝑧𝑦 ∈ dom 𝐹)
116eleq2d 2901 . . . . . . . . . . . . . 14 (𝐹 Fn 𝐴 → (𝑦 ∈ dom 𝐹𝑦𝐴))
1210, 11syl5ib 246 . . . . . . . . . . . . 13 (𝐹 Fn 𝐴 → (𝑦𝐹𝑧𝑦𝐴))
138, 12anim12d 610 . . . . . . . . . . . 12 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) → (𝑥𝐴𝑦𝐴)))
1413pm4.71rd 565 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
15 eqcom 2831 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑧)
16 fnbrfvb 6721 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑧𝑥𝐹𝑧))
1715, 16syl5bb 285 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑧 = (𝐹𝑥) ↔ 𝑥𝐹𝑧))
18 eqcom 2831 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹𝑦) ↔ (𝐹𝑦) = 𝑧)
19 fnbrfvb 6721 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴𝑦𝐴) → ((𝐹𝑦) = 𝑧𝑦𝐹𝑧))
2018, 19syl5bb 285 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴𝑦𝐴) → (𝑧 = (𝐹𝑦) ↔ 𝑦𝐹𝑧))
2117, 20bi2anan9 637 . . . . . . . . . . . . 13 (((𝐹 Fn 𝐴𝑥𝐴) ∧ (𝐹 Fn 𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2221anandis 676 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) ↔ (𝑥𝐹𝑧𝑦𝐹𝑧)))
2322pm5.32da 581 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝐹𝑧𝑦𝐹𝑧))))
2414, 23bitr4d 284 . . . . . . . . . 10 (𝐹 Fn 𝐴 → ((𝑥𝐹𝑧𝑦𝐹𝑧) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))))
2524imbi1d 344 . . . . . . . . 9 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ (((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦)))
26 impexp 453 . . . . . . . . 9 ((((𝑥𝐴𝑦𝐴) ∧ (𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦))) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
2725, 26syl6bb 289 . . . . . . . 8 (𝐹 Fn 𝐴 → (((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
2827albidv 1920 . . . . . . 7 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))))
29 19.21v 1939 . . . . . . . 8 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)))
30 19.23v 1942 . . . . . . . . . 10 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
31 fvex 6686 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
3231eqvinc 3645 . . . . . . . . . . 11 ((𝐹𝑥) = (𝐹𝑦) ↔ ∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)))
3332imbi1i 352 . . . . . . . . . 10 (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ (∃𝑧(𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦))
3430, 33bitr4i 280 . . . . . . . . 9 (∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦) ↔ ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3534imbi2i 338 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) → ∀𝑧((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3629, 35bitri 277 . . . . . . 7 (∀𝑧((𝑥𝐴𝑦𝐴) → ((𝑧 = (𝐹𝑥) ∧ 𝑧 = (𝐹𝑦)) → 𝑥 = 𝑦)) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
3728, 36syl6bb 289 . . . . . 6 (𝐹 Fn 𝐴 → (∀𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
38372albidv 1923 . . . . 5 (𝐹 Fn 𝐴 → (∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
39 breq1 5072 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐹𝑧𝑦𝐹𝑧))
4039mo4 2649 . . . . . . 7 (∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4140albii 1819 . . . . . 6 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
42 alrot3 2163 . . . . . 6 (∀𝑧𝑥𝑦((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
4341, 42bitri 277 . . . . 5 (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝑦𝑧((𝑥𝐹𝑧𝑦𝐹𝑧) → 𝑥 = 𝑦))
44 r2al 3204 . . . . 5 (∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4538, 43, 443bitr4g 316 . . . 4 (𝐹 Fn 𝐴 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
462, 45syl 17 . . 3 (𝐹:𝐴𝐵 → (∀𝑧∃*𝑥 𝑥𝐹𝑧 ↔ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4746pm5.32i 577 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑧∃*𝑥 𝑥𝐹𝑧) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
481, 47bitri 277 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1534   = wceq 1536  wex 1779  wcel 2113  ∃*wmo 2619  wral 3141   class class class wbr 5069  dom cdm 5558   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fv 6366
This theorem is referenced by:  dff13f  7017  f1veqaeq  7018  fpropnf1  7028  dff14a  7031  dff1o6  7035  fcof1  7046  nf1const  7062  soisoi  7084  f1opr  7213  f1o2ndf1  7821  fnwelem  7828  smo11  8004  tz7.48lem  8080  omsmo  8284  unxpdomlem3  8727  unfilem2  8786  fofinf1o  8802  inf3lem6  9099  r111  9207  fseqenlem1  9453  fodomacn  9485  alephf1  9514  alephiso  9527  ackbij1lem17  9661  infpssrlem5  9732  fin23lem28  9765  fin1a2lem2  9826  fin1a2lem4  9828  axcc2lem  9861  domtriomlem  9867  cnref1o  12387  injresinj  13161  om2uzf1oi  13324  cshf1  14175  wwlktovf1  14324  reeff1  15476  bitsf1  15798  crth  16118  eulerthlem2  16122  1arith  16266  vdwlem12  16331  xpsff1o  16843  setcmon  17350  fthestrcsetc  17403  embedsetcestrclem  17410  fthsetcestrc  17418  yoniso  17538  ghmf1  18390  orbsta  18446  symgextf1  18552  symgfixf1  18568  odf1  18692  kerf1ghm  19500  kerf1hrmOLD  19501  mvrf1  20208  ply1sclf1  20460  znf1o  20701  cygznlem3  20719  uvcf1  20939  lindff1  20967  scmatf1  21143  mdetunilem8  21231  mat2pmatf1  21340  pm2mpf1  21410  ist0-4  22340  ovolicc2lem4  24124  recosf1o  25122  efif1olem4  25132  basellem4  25664  dvdsmulf1o  25774  lgsqrlem2  25926  lgseisenlem2  25955  2lgslem1b  25971  axlowdimlem15  26745  upgrwlkdvdelem  27520  wlkswwlksf1o  27660  wwlksnextinj  27680  clwlkclwwlkf1  27791  clwwlkf1  27831  frgrncvvdeqlem8  28088  numclwwlk1lem2f1  28139  pjmf1  29496  unopf1o  29696  fnpreimac  30419  s3f1  30627  ccatf1  30629  swrdf1  30634  tocyccntz  30790  dff15  32357  f1resrcmplf1d  32364  f1resfz0f1d  32365  erdszelem9  32450  mrsubff1  32765  msubff1  32807  mvhf1  32810  f1omptsnlem  34621  fvineqsnf1  34695  fvineqsneu  34696  poimirlem26  34922  poimirlem27  34923  grpokerinj  35175  cdleme50f1  37683  dihf11  38407  dnnumch3  39653  wessf1ornlem  41451  projf1o  41465  sumnnodd  41917  dvnprodlem1  42237  fourierdlem34  42433  fourierdlem51  42449  imasetpreimafvbijlemf1  43571  fargshiftf1  43608  sprsymrelf1  43665  prproropf1o  43676  fmtnof1  43704  prmdvdsfmtnof1  43756  isomuspgrlem2c  44002  uspgrsprf1  44029  rrx2xpref1o  44712
  Copyright terms: Public domain W3C validator