MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff14b Structured version   Visualization version   GIF version

Theorem dff14b 7023
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
Assertion
Ref Expression
dff14b (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem dff14b
StepHypRef Expression
1 dff14a 7022 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
2 necom 3069 . . . . . . 7 (𝑥𝑦𝑦𝑥)
32imbi1i 352 . . . . . 6 ((𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
43ralbii 3165 . . . . 5 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)))
5 raldifsnb 4722 . . . . 5 (∀𝑦𝐴 (𝑦𝑥 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
64, 5bitri 277 . . . 4 (∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
76ralbii 3165 . . 3 (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)) ↔ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦))
87anbi2i 624 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
91, 8bitri 277 1 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wne 3016  wral 3138  cdif 3932  {csn 4560  wf 6345  1-1wf1 6346  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fv 6357
This theorem is referenced by:  f12dfv  7024  f13dfv  7025
  Copyright terms: Public domain W3C validator