MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo4 Structured version   Visualization version   GIF version

Theorem dffo4 6861
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo4
StepHypRef Expression
1 dffo2 6587 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 simpl 483 . . . 4 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
3 vex 3495 . . . . . . . . . 10 𝑦 ∈ V
43elrn 5815 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
5 eleq2 2898 . . . . . . . . 9 (ran 𝐹 = 𝐵 → (𝑦 ∈ ran 𝐹𝑦𝐵))
64, 5syl5bbr 286 . . . . . . . 8 (ran 𝐹 = 𝐵 → (∃𝑥 𝑥𝐹𝑦𝑦𝐵))
76biimpar 478 . . . . . . 7 ((ran 𝐹 = 𝐵𝑦𝐵) → ∃𝑥 𝑥𝐹𝑦)
87adantll 710 . . . . . 6 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐹𝑦)
9 ffn 6507 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
10 fnbr 6452 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1110ex 413 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
129, 11syl 17 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
1312ancrd 552 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
1413eximdv 1909 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
15 df-rex 3141 . . . . . . . 8 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1614, 15syl6ibr 253 . . . . . . 7 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1716ad2antrr 722 . . . . . 6 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
188, 17mpd 15 . . . . 5 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑥𝐹𝑦)
1918ralrimiva 3179 . . . 4 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦)
202, 19jca 512 . . 3 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
211, 20sylbi 218 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
22 fnbrfvb 6711 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2322biimprd 249 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
24 eqcom 2825 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2523, 24syl6ib 252 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥𝐹𝑦𝑦 = (𝐹𝑥)))
269, 25sylan 580 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → (𝑥𝐹𝑦𝑦 = (𝐹𝑥)))
2726reximdva 3271 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
2827ralimdv 3175 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
2928imdistani 569 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
30 dffo3 6860 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3129, 30sylibr 235 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → 𝐹:𝐴onto𝐵)
3221, 31impbii 210 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  wral 3135  wrex 3136   class class class wbr 5057  ran crn 5549   Fn wfn 6343  wf 6344  ontowfo 6346  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356
This theorem is referenced by:  dffo5  6862  exfo  6863  brdom3  9938  phpreu  34757  poimirlem26  34799
  Copyright terms: Public domain W3C validator