MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo5 Structured version   Visualization version   GIF version

Theorem dffo5 6872
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 6871 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
2 rexex 3242 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦)
32ralimi 3162 . . . 4 (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥 𝑥𝐹𝑦)
43anim2i 618 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
5 ffn 6516 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnbr 6461 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
76ex 415 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
85, 7syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
98ancrd 554 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
109eximdv 1918 . . . . . 6 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
11 df-rex 3146 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1210, 11syl6ibr 254 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1312ralimdv 3180 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
1413imdistani 571 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
154, 14impbii 211 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
161, 15bitri 277 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wex 1780  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068   Fn wfn 6352  wf 6353  ontowfo 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fo 6363  df-fv 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator