MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr4 Structured version   Visualization version   GIF version

Theorem dffr4 5599
Description: Alternate definition of well-founded relation. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
dffr4 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dffr4
StepHypRef Expression
1 dffr3 5404 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
2 df-pred 5583 . . . . . 6 Pred(𝑅, 𝑥, 𝑦) = (𝑥 ∩ (𝑅 “ {𝑦}))
32eqeq1i 2614 . . . . 5 (Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
43rexbii 3022 . . . 4 (∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅ ↔ ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅)
54imbi2i 324 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
65albii 1736 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
71, 6bitr4i 265 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 Pred(𝑅, 𝑥, 𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wne 2779  wrex 2896  cin 3538  wss 3539  c0 3873  {csn 4124   Fr wfr 4984  ccnv 5027  cima 5031  Predcpred 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-fr 4987  df-xp 5034  df-cnv 5036  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583
This theorem is referenced by:  frmin  30817
  Copyright terms: Public domain W3C validator