Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffr5 Structured version   Visualization version   GIF version

Theorem dffr5 31351
Description: A quantifier free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
dffr5 (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))

Proof of Theorem dffr5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3565 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}))
2 selpw 4137 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3 velsn 4164 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43necon3bbii 2837 . . . . . 6 𝑥 ∈ {∅} ↔ 𝑥 ≠ ∅)
52, 4anbi12i 732 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
61, 5bitri 264 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
7 brdif 4665 . . . . . . 7 (𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ (𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ 𝑅)𝑥))
8 epel 4988 . . . . . . . 8 (𝑦 E 𝑥𝑦𝑥)
9 vex 3189 . . . . . . . . . . 11 𝑦 ∈ V
10 vex 3189 . . . . . . . . . . 11 𝑥 ∈ V
119, 10coep 31349 . . . . . . . . . 10 (𝑦( E ∘ 𝑅)𝑥 ↔ ∃𝑧𝑥 𝑦𝑅𝑧)
12 vex 3189 . . . . . . . . . . . 12 𝑧 ∈ V
139, 12brcnv 5265 . . . . . . . . . . 11 (𝑦𝑅𝑧𝑧𝑅𝑦)
1413rexbii 3034 . . . . . . . . . 10 (∃𝑧𝑥 𝑦𝑅𝑧 ↔ ∃𝑧𝑥 𝑧𝑅𝑦)
15 dfrex2 2990 . . . . . . . . . 10 (∃𝑧𝑥 𝑧𝑅𝑦 ↔ ¬ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
1611, 14, 153bitrri 287 . . . . . . . . 9 (¬ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦𝑦( E ∘ 𝑅)𝑥)
1716con1bii 346 . . . . . . . 8 𝑦( E ∘ 𝑅)𝑥 ↔ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
188, 17anbi12i 732 . . . . . . 7 ((𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ 𝑅)𝑥) ↔ (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
197, 18bitri 264 . . . . . 6 (𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2019exbii 1771 . . . . 5 (∃𝑦 𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2110elrn 5326 . . . . 5 (𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∃𝑦 𝑦( E ∖ ( E ∘ 𝑅))𝑥)
22 df-rex 2913 . . . . 5 (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2320, 21, 223bitr4i 292 . . . 4 (𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
246, 23imbi12i 340 . . 3 ((𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2524albii 1744 . 2 (∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
26 dfss2 3572 . 2 ((𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))))
27 df-fr 5033 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2825, 26, 273bitr4ri 293 1 (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1478  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  cdif 3552  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   class class class wbr 4613   E cep 4983   Fr wfr 5030  ccnv 5073  ran crn 5075  ccom 5078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-eprel 4985  df-fr 5033  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator