Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffr5 Structured version   Visualization version   GIF version

Theorem dffr5 31971
Description: A quantifier free definition of a well-founded relationship. (Contributed by Scott Fenton, 11-Apr-2011.)
Assertion
Ref Expression
dffr5 (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))

Proof of Theorem dffr5
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3725 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}))
2 selpw 4309 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3 velsn 4337 . . . . . . 7 (𝑥 ∈ {∅} ↔ 𝑥 = ∅)
43necon3bbii 2979 . . . . . 6 𝑥 ∈ {∅} ↔ 𝑥 ≠ ∅)
52, 4anbi12i 735 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ ¬ 𝑥 ∈ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
61, 5bitri 264 . . . 4 (𝑥 ∈ (𝒫 𝐴 ∖ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
7 brdif 4857 . . . . . . 7 (𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ (𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ 𝑅)𝑥))
8 epel 5182 . . . . . . . 8 (𝑦 E 𝑥𝑦𝑥)
9 vex 3343 . . . . . . . . . . 11 𝑦 ∈ V
10 vex 3343 . . . . . . . . . . 11 𝑥 ∈ V
119, 10coep 31969 . . . . . . . . . 10 (𝑦( E ∘ 𝑅)𝑥 ↔ ∃𝑧𝑥 𝑦𝑅𝑧)
12 vex 3343 . . . . . . . . . . . 12 𝑧 ∈ V
139, 12brcnv 5460 . . . . . . . . . . 11 (𝑦𝑅𝑧𝑧𝑅𝑦)
1413rexbii 3179 . . . . . . . . . 10 (∃𝑧𝑥 𝑦𝑅𝑧 ↔ ∃𝑧𝑥 𝑧𝑅𝑦)
15 dfrex2 3134 . . . . . . . . . 10 (∃𝑧𝑥 𝑧𝑅𝑦 ↔ ¬ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
1611, 14, 153bitrri 287 . . . . . . . . 9 (¬ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦𝑦( E ∘ 𝑅)𝑥)
1716con1bii 345 . . . . . . . 8 𝑦( E ∘ 𝑅)𝑥 ↔ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
188, 17anbi12i 735 . . . . . . 7 ((𝑦 E 𝑥 ∧ ¬ 𝑦( E ∘ 𝑅)𝑥) ↔ (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
197, 18bitri 264 . . . . . 6 (𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ (𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2019exbii 1923 . . . . 5 (∃𝑦 𝑦( E ∖ ( E ∘ 𝑅))𝑥 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2110elrn 5521 . . . . 5 (𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∃𝑦 𝑦( E ∖ ( E ∘ 𝑅))𝑥)
22 df-rex 3056 . . . . 5 (∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦 ↔ ∃𝑦(𝑦𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦))
2320, 21, 223bitr4i 292 . . . 4 (𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
246, 23imbi12i 339 . . 3 ((𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2524albii 1896 . 2 (∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
26 dfss2 3732 . 2 ((𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)) ↔ ∀𝑥(𝑥 ∈ (𝒫 𝐴 ∖ {∅}) → 𝑥 ∈ ran ( E ∖ ( E ∘ 𝑅))))
27 df-fr 5225 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2825, 26, 273bitr4ri 293 1 (𝑅 Fr 𝐴 ↔ (𝒫 𝐴 ∖ {∅}) ⊆ ran ( E ∖ ( E ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1630  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  cdif 3712  wss 3715  c0 4058  𝒫 cpw 4302  {csn 4321   class class class wbr 4804   E cep 5178   Fr wfr 5222  ccnv 5265  ran crn 5267  ccom 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-eprel 5179  df-fr 5225  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator