Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffrege115 Structured version   Visualization version   GIF version

Theorem dffrege115 37189
Description: If from the the circumstance that 𝑐 is a result of an application of the procedure 𝑅 to 𝑏, whatever 𝑏 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑏 is the same as 𝑐, then we say : "The procedure 𝑅 is single-valued". Definition 115 of [Frege1879] p. 77. (Contributed by RP, 7-Jul-2020.)
Assertion
Ref Expression
dffrege115 (∀𝑐𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ Fun 𝑅)
Distinct variable group:   𝑎,𝑏,𝑐,𝑅

Proof of Theorem dffrege115
StepHypRef Expression
1 alcom 1974 . 2 (∀𝑐𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∀𝑏𝑐(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)))
2 19.21v 1821 . . . . . . 7 (∀𝑎(𝑏𝑅𝑐 → (𝑏𝑅𝑎𝑎 = 𝑐)) ↔ (𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)))
3 impexp 460 . . . . . . . . 9 (((𝑏𝑅𝑐𝑏𝑅𝑎) → 𝑎 = 𝑐) ↔ (𝑏𝑅𝑐 → (𝑏𝑅𝑎𝑎 = 𝑐)))
4 vex 3080 . . . . . . . . . . . . 13 𝑏 ∈ V
5 vex 3080 . . . . . . . . . . . . 13 𝑐 ∈ V
64, 5brcnv 5119 . . . . . . . . . . . 12 (𝑏𝑅𝑐𝑐𝑅𝑏)
7 df-br 4482 . . . . . . . . . . . 12 (𝑏𝑅𝑐 ↔ ⟨𝑏, 𝑐⟩ ∈ 𝑅)
85, 4brcnv 5119 . . . . . . . . . . . 12 (𝑐𝑅𝑏𝑏𝑅𝑐)
96, 7, 83bitr3ri 289 . . . . . . . . . . 11 (𝑏𝑅𝑐 ↔ ⟨𝑏, 𝑐⟩ ∈ 𝑅)
10 vex 3080 . . . . . . . . . . . . 13 𝑎 ∈ V
114, 10brcnv 5119 . . . . . . . . . . . 12 (𝑏𝑅𝑎𝑎𝑅𝑏)
12 df-br 4482 . . . . . . . . . . . 12 (𝑏𝑅𝑎 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑅)
1310, 4brcnv 5119 . . . . . . . . . . . 12 (𝑎𝑅𝑏𝑏𝑅𝑎)
1411, 12, 133bitr3ri 289 . . . . . . . . . . 11 (𝑏𝑅𝑎 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑅)
159, 14anbi12ci 729 . . . . . . . . . 10 ((𝑏𝑅𝑐𝑏𝑅𝑎) ↔ (⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅))
1615imbi1i 337 . . . . . . . . 9 (((𝑏𝑅𝑐𝑏𝑅𝑎) → 𝑎 = 𝑐) ↔ ((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
173, 16bitr3i 264 . . . . . . . 8 ((𝑏𝑅𝑐 → (𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
1817albii 1722 . . . . . . 7 (∀𝑎(𝑏𝑅𝑐 → (𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∀𝑎((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
192, 18bitr3i 264 . . . . . 6 ((𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∀𝑎((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
2019albii 1722 . . . . 5 (∀𝑐(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∀𝑐𝑎((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
21 alcom 1974 . . . . 5 (∀𝑐𝑎((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐) ↔ ∀𝑎𝑐((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
2220, 21bitri 262 . . . 4 (∀𝑐(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∀𝑎𝑐((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
23 opeq2 4239 . . . . . 6 (𝑎 = 𝑐 → ⟨𝑏, 𝑎⟩ = ⟨𝑏, 𝑐⟩)
2423eleq1d 2576 . . . . 5 (𝑎 = 𝑐 → (⟨𝑏, 𝑎⟩ ∈ 𝑅 ↔ ⟨𝑏, 𝑐⟩ ∈ 𝑅))
2524mo4 2409 . . . 4 (∃*𝑎𝑏, 𝑎⟩ ∈ 𝑅 ↔ ∀𝑎𝑐((⟨𝑏, 𝑎⟩ ∈ 𝑅 ∧ ⟨𝑏, 𝑐⟩ ∈ 𝑅) → 𝑎 = 𝑐))
26 mo2v 2369 . . . 4 (∃*𝑎𝑏, 𝑎⟩ ∈ 𝑅 ↔ ∃𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐))
2722, 25, 263bitr2i 286 . . 3 (∀𝑐(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∃𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐))
2827albii 1722 . 2 (∀𝑏𝑐(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ ∀𝑏𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐))
29 relcnv 5313 . . . 4 Rel 𝑅
3029biantrur 525 . . 3 (∀𝑏𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐) ↔ (Rel 𝑅 ∧ ∀𝑏𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐)))
31 dffun5 5702 . . 3 (Fun 𝑅 ↔ (Rel 𝑅 ∧ ∀𝑏𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐)))
3230, 31bitr4i 265 . 2 (∀𝑏𝑐𝑎(⟨𝑏, 𝑎⟩ ∈ 𝑅𝑎 = 𝑐) ↔ Fun 𝑅)
331, 28, 323bitri 284 1 (∀𝑐𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎𝑎 = 𝑐)) ↔ Fun 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472  wex 1694  wcel 1938  ∃*wmo 2363  cop 4034   class class class wbr 4481  ccnv 4931  Rel wrel 4937  Fun wfun 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-br 4482  df-opab 4542  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-fun 5691
This theorem is referenced by:  frege116  37190
  Copyright terms: Public domain W3C validator