MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffun6f Structured version   Visualization version   GIF version

Theorem dffun6f 5703
Description: Definition of function, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dffun6f.1 𝑥𝐴
dffun6f.2 𝑦𝐴
Assertion
Ref Expression
dffun6f (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dffun6f
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun3 5700 . 2 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢)))
2 nfcv 2655 . . . . . . 7 𝑦𝑤
3 dffun6f.2 . . . . . . 7 𝑦𝐴
4 nfcv 2655 . . . . . . 7 𝑦𝑣
52, 3, 4nfbr 4527 . . . . . 6 𝑦 𝑤𝐴𝑣
6 nfv 1796 . . . . . 6 𝑣 𝑤𝐴𝑦
7 breq2 4485 . . . . . 6 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvmo 2398 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃*𝑦 𝑤𝐴𝑦)
98albii 1722 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤∃*𝑦 𝑤𝐴𝑦)
10 mo2v 2369 . . . . 5 (∃*𝑣 𝑤𝐴𝑣 ↔ ∃𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢))
1110albii 1722 . . . 4 (∀𝑤∃*𝑣 𝑤𝐴𝑣 ↔ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢))
12 nfcv 2655 . . . . . . 7 𝑥𝑤
13 dffun6f.1 . . . . . . 7 𝑥𝐴
14 nfcv 2655 . . . . . . 7 𝑥𝑦
1512, 13, 14nfbr 4527 . . . . . 6 𝑥 𝑤𝐴𝑦
1615nfmo 2379 . . . . 5 𝑥∃*𝑦 𝑤𝐴𝑦
17 nfv 1796 . . . . 5 𝑤∃*𝑦 𝑥𝐴𝑦
18 breq1 4484 . . . . . 6 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1918mobidv 2383 . . . . 5 (𝑤 = 𝑥 → (∃*𝑦 𝑤𝐴𝑦 ↔ ∃*𝑦 𝑥𝐴𝑦))
2016, 17, 19cbval 2162 . . . 4 (∀𝑤∃*𝑦 𝑤𝐴𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝐴𝑦)
219, 11, 203bitr3ri 289 . . 3 (∀𝑥∃*𝑦 𝑥𝐴𝑦 ↔ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢))
2221anbi2i 725 . 2 ((Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦) ↔ (Rel 𝐴 ∧ ∀𝑤𝑢𝑣(𝑤𝐴𝑣𝑣 = 𝑢)))
231, 22bitr4i 265 1 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥∃*𝑦 𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472  wex 1694  ∃*wmo 2363  wnfc 2642   class class class wbr 4481  Rel wrel 4937  Fun wfun 5683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ral 2805  df-rab 2809  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-br 4482  df-opab 4542  df-id 4847  df-cnv 4940  df-co 4941  df-fun 5691
This theorem is referenced by:  dffun6  5704  funopab  5722  funcnvmptOLD  28639  funcnvmpt  28640
  Copyright terms: Public domain W3C validator