 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffv4 Structured version   Visualization version   GIF version

Theorem dffv4 6082
 Description: The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5396), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dffv4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffv3 6081 . 2 (𝐹𝐴) = (℩𝑦𝑦 ∈ (𝐹 “ {𝐴}))
2 df-iota 5751 . 2 (℩𝑦𝑦 ∈ (𝐹 “ {𝐴})) = {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}}
3 abid2 2728 . . . . 5 {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = (𝐹 “ {𝐴})
43eqeq1i 2611 . . . 4 ({𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥} ↔ (𝐹 “ {𝐴}) = {𝑥})
54abbii 2722 . . 3 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
65unieqi 4372 . 2 {𝑥 ∣ {𝑦𝑦 ∈ (𝐹 “ {𝐴})} = {𝑥}} = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
71, 2, 63eqtri 2632 1 (𝐹𝐴) = {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1474   ∈ wcel 1976  {cab 2592  {csn 4121  ∪ cuni 4363   “ cima 5028  ℩cio 5749  ‘cfv 5787 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-xp 5031  df-cnv 5033  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fv 5795 This theorem is referenced by:  csbfv12gALTOLD  37874  csbfv12gALTVD  37957
 Copyright terms: Public domain W3C validator