MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3lem Structured version   Visualization version   GIF version

Theorem dfgrp3lem 17282
Description: Lemma for dfgrp3 17283. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3lem ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
Distinct variable groups:   𝐵,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦   𝐺,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦   + ,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦

Proof of Theorem dfgrp3lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1054 . . 3 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐵 ≠ ∅)
2 n0 3889 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤𝐵)
31, 2sylib 206 . 2 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑤 𝑤𝐵)
4 oveq2 6535 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝑙 + 𝑥) = (𝑙 + 𝑤))
54eqeq1d 2611 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑦))
65rexbidv 3033 . . . . . . . . . 10 (𝑥 = 𝑤 → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦))
7 oveq1 6534 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝑥 + 𝑟) = (𝑤 + 𝑟))
87eqeq1d 2611 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑦))
98rexbidv 3033 . . . . . . . . . 10 (𝑥 = 𝑤 → (∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦))
106, 9anbi12d 742 . . . . . . . . 9 (𝑥 = 𝑤 → ((∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
1110ralbidv 2968 . . . . . . . 8 (𝑥 = 𝑤 → (∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
1211rspcv 3277 . . . . . . 7 (𝑤𝐵 → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
13 eqeq2 2620 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑤))
1413rexbidv 3033 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤))
15 eqeq2 2620 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑤))
1615rexbidv 3033 . . . . . . . . . . 11 (𝑦 = 𝑤 → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤))
1714, 16anbi12d 742 . . . . . . . . . 10 (𝑦 = 𝑤 → ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤)))
1817rspcva 3279 . . . . . . . . 9 ((𝑤𝐵 ∧ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤))
19 oveq1 6534 . . . . . . . . . . . . 13 (𝑙 = 𝑢 → (𝑙 + 𝑤) = (𝑢 + 𝑤))
2019eqeq1d 2611 . . . . . . . . . . . 12 (𝑙 = 𝑢 → ((𝑙 + 𝑤) = 𝑤 ↔ (𝑢 + 𝑤) = 𝑤))
2120cbvrexv 3147 . . . . . . . . . . 11 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ↔ ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2221biimpi 204 . . . . . . . . . 10 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2322adantr 479 . . . . . . . . 9 ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2418, 23syl 17 . . . . . . . 8 ((𝑤𝐵 ∧ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2524ex 448 . . . . . . 7 (𝑤𝐵 → (∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2612, 25syld 45 . . . . . 6 (𝑤𝐵 → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2726com12 32 . . . . 5 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → (𝑤𝐵 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
28273ad2ant3 1076 . . . 4 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (𝑤𝐵 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2928imp 443 . . 3 (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
30 eqeq2 2620 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑎))
3130rexbidv 3033 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎))
32 eqeq2 2620 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑎))
3332rexbidv 3033 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3431, 33anbi12d 742 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)))
3510, 34rspc2va 3293 . . . . . . . . . . . . 13 (((𝑤𝐵𝑎𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3635simprd 477 . . . . . . . . . . . 12 (((𝑤𝐵𝑎𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
3736expcom 449 . . . . . . . . . . 11 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑤𝐵𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
38373ad2ant3 1076 . . . . . . . . . 10 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑤𝐵𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3938impl 647 . . . . . . . . 9 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
4039ad2ant2r 778 . . . . . . . 8 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
41 oveq2 6535 . . . . . . . . . . . 12 (𝑟 = 𝑧 → (𝑤 + 𝑟) = (𝑤 + 𝑧))
4241eqeq1d 2611 . . . . . . . . . . 11 (𝑟 = 𝑧 → ((𝑤 + 𝑟) = 𝑎 ↔ (𝑤 + 𝑧) = 𝑎))
4342cbvrexv 3147 . . . . . . . . . 10 (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 ↔ ∃𝑧𝐵 (𝑤 + 𝑧) = 𝑎)
44 simpll1 1092 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) → 𝐺 ∈ SGrp)
4544adantr 479 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝐺 ∈ SGrp)
46 simplr 787 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑢𝐵)
47 simpllr 794 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑤𝐵)
48 simprr 791 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑧𝐵)
49 dfgrp3.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
50 dfgrp3.p . . . . . . . . . . . . . . . 16 + = (+g𝐺)
5149, 50sgrpass 17059 . . . . . . . . . . . . . . 15 ((𝐺 ∈ SGrp ∧ (𝑢𝐵𝑤𝐵𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧)))
5245, 46, 47, 48, 51syl13anc 1319 . . . . . . . . . . . . . 14 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧)))
53 simprl 789 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → (𝑢 + 𝑤) = 𝑤)
5453oveq1d 6542 . . . . . . . . . . . . . 14 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑤 + 𝑧))
5552, 54eqtr3d 2645 . . . . . . . . . . . . 13 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧))
5655anassrs 677 . . . . . . . . . . . 12 ((((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧𝐵) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧))
57 oveq2 6535 . . . . . . . . . . . . 13 ((𝑤 + 𝑧) = 𝑎 → (𝑢 + (𝑤 + 𝑧)) = (𝑢 + 𝑎))
58 id 22 . . . . . . . . . . . . 13 ((𝑤 + 𝑧) = 𝑎 → (𝑤 + 𝑧) = 𝑎)
5957, 58eqeq12d 2624 . . . . . . . . . . . 12 ((𝑤 + 𝑧) = 𝑎 → ((𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧) ↔ (𝑢 + 𝑎) = 𝑎))
6056, 59syl5ibcom 233 . . . . . . . . . . 11 ((((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧𝐵) → ((𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6160rexlimdva 3012 . . . . . . . . . 10 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑧𝐵 (𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6243, 61syl5bi 230 . . . . . . . . 9 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6362adantrl 747 . . . . . . . 8 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6440, 63mpd 15 . . . . . . 7 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (𝑢 + 𝑎) = 𝑎)
65 oveq2 6535 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑙 + 𝑥) = (𝑙 + 𝑎))
6665eqeq1d 2611 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑦))
6766rexbidv 3033 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦))
68 oveq1 6534 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑥 + 𝑟) = (𝑎 + 𝑟))
6968eqeq1d 2611 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑦))
7069rexbidv 3033 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦))
7167, 70anbi12d 742 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦)))
72 eqeq2 2620 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → ((𝑙 + 𝑎) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑢))
7372rexbidv 3033 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
74 eqeq2 2620 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → ((𝑎 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑢))
7574rexbidv 3033 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢))
7673, 75anbi12d 742 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢)))
7771, 76rspc2va 3293 . . . . . . . . . . . . . . . 16 (((𝑎𝐵𝑢𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢))
7877simpld 473 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑢𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢)
7978ex 448 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑢𝐵) → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8079ancoms 467 . . . . . . . . . . . . 13 ((𝑢𝐵𝑎𝐵) → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8180com12 32 . . . . . . . . . . . 12 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑢𝐵𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
82813ad2ant3 1076 . . . . . . . . . . 11 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑢𝐵𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8382impl 647 . . . . . . . . . 10 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢)
84 oveq1 6534 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝑙 + 𝑎) = (𝑖 + 𝑎))
8584eqeq1d 2611 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝑙 + 𝑎) = 𝑢 ↔ (𝑖 + 𝑎) = 𝑢))
8685cbvrexv 3147 . . . . . . . . . 10 (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ↔ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8783, 86sylib 206 . . . . . . . . 9 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8887adantllr 750 . . . . . . . 8 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8988adantrr 748 . . . . . . 7 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
9064, 89jca 552 . . . . . 6 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
9190expr 640 . . . . 5 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ((𝑢 + 𝑤) = 𝑤 → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9291ralrimdva 2951 . . . 4 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) → ((𝑢 + 𝑤) = 𝑤 → ∀𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9392reximdva 2999 . . 3 (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → (∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤 → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9429, 93mpd 15 . 2 (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
953, 94exlimddv 1849 1 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1976  wne 2779  wral 2895  wrex 2896  c0 3873  cfv 5790  (class class class)co 6527  Basecbs 15641  +gcplusg 15714  SGrpcsgrp 17052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-nul 4712
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-iota 5754  df-fv 5798  df-ov 6530  df-sgrp 17053
This theorem is referenced by:  dfgrp3  17283
  Copyright terms: Public domain W3C validator