MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3lem Structured version   Visualization version   GIF version

Theorem dfgrp3lem 17734
Description: Lemma for dfgrp3 17735. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b 𝐵 = (Base‘𝐺)
dfgrp3.p + = (+g𝐺)
Assertion
Ref Expression
dfgrp3lem ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
Distinct variable groups:   𝐵,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦   𝐺,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦   + ,𝑎,𝑖,𝑙,𝑟,𝑢,𝑥,𝑦

Proof of Theorem dfgrp3lem
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1132 . . 3 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐵 ≠ ∅)
2 n0 4074 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑤 𝑤𝐵)
31, 2sylib 208 . 2 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑤 𝑤𝐵)
4 oveq2 6822 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑙 + 𝑥) = (𝑙 + 𝑤))
54eqeq1d 2762 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑦))
65rexbidv 3190 . . . . . . . . 9 (𝑥 = 𝑤 → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦))
7 oveq1 6821 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 + 𝑟) = (𝑤 + 𝑟))
87eqeq1d 2762 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑦))
98rexbidv 3190 . . . . . . . . 9 (𝑥 = 𝑤 → (∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦))
106, 9anbi12d 749 . . . . . . . 8 (𝑥 = 𝑤 → ((∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
1110ralbidv 3124 . . . . . . 7 (𝑥 = 𝑤 → (∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
1211rspcv 3445 . . . . . 6 (𝑤𝐵 → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)))
13 eqeq2 2771 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑤))
1413rexbidv 3190 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤))
15 eqeq2 2771 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑤))
1615rexbidv 3190 . . . . . . . . . 10 (𝑦 = 𝑤 → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤))
1714, 16anbi12d 749 . . . . . . . . 9 (𝑦 = 𝑤 → ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤)))
1817rspcva 3447 . . . . . . . 8 ((𝑤𝐵 ∧ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤))
19 oveq1 6821 . . . . . . . . . . . 12 (𝑙 = 𝑢 → (𝑙 + 𝑤) = (𝑢 + 𝑤))
2019eqeq1d 2762 . . . . . . . . . . 11 (𝑙 = 𝑢 → ((𝑙 + 𝑤) = 𝑤 ↔ (𝑢 + 𝑤) = 𝑤))
2120cbvrexv 3311 . . . . . . . . . 10 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ↔ ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2221biimpi 206 . . . . . . . . 9 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2322adantr 472 . . . . . . . 8 ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑤) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2418, 23syl 17 . . . . . . 7 ((𝑤𝐵 ∧ ∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦)) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
2524ex 449 . . . . . 6 (𝑤𝐵 → (∀𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2612, 25syldc 48 . . . . 5 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → (𝑤𝐵 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
27263ad2ant3 1130 . . . 4 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (𝑤𝐵 → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤))
2827imp 444 . . 3 (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → ∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤)
29 eqeq2 2771 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑎))
3029rexbidv 3190 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎))
31 eqeq2 2771 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑎 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑎))
3231rexbidv 3190 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3330, 32anbi12d 749 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((∃𝑙𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)))
3410, 33rspc2va 3462 . . . . . . . . . . . . 13 (((𝑤𝐵𝑎𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3534simprd 482 . . . . . . . . . . . 12 (((𝑤𝐵𝑎𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
3635expcom 450 . . . . . . . . . . 11 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑤𝐵𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
37363ad2ant3 1130 . . . . . . . . . 10 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑤𝐵𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎))
3837impl 651 . . . . . . . . 9 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑎𝐵) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
3938ad2ant2r 800 . . . . . . . 8 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎)
40 oveq2 6822 . . . . . . . . . . . 12 (𝑟 = 𝑧 → (𝑤 + 𝑟) = (𝑤 + 𝑧))
4140eqeq1d 2762 . . . . . . . . . . 11 (𝑟 = 𝑧 → ((𝑤 + 𝑟) = 𝑎 ↔ (𝑤 + 𝑧) = 𝑎))
4241cbvrexv 3311 . . . . . . . . . 10 (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 ↔ ∃𝑧𝐵 (𝑤 + 𝑧) = 𝑎)
43 simpll1 1255 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) → 𝐺 ∈ SGrp)
4443adantr 472 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝐺 ∈ SGrp)
45 simplr 809 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑢𝐵)
46 simpllr 817 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑤𝐵)
47 simprr 813 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → 𝑧𝐵)
48 dfgrp3.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐺)
49 dfgrp3.p . . . . . . . . . . . . . . . 16 + = (+g𝐺)
5048, 49sgrpass 17511 . . . . . . . . . . . . . . 15 ((𝐺 ∈ SGrp ∧ (𝑢𝐵𝑤𝐵𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧)))
5144, 45, 46, 47, 50syl13anc 1479 . . . . . . . . . . . . . 14 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧)))
52 simprl 811 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → (𝑢 + 𝑤) = 𝑤)
5352oveq1d 6829 . . . . . . . . . . . . . 14 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑤 + 𝑧))
5451, 53eqtr3d 2796 . . . . . . . . . . . . 13 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ ((𝑢 + 𝑤) = 𝑤𝑧𝐵)) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧))
5554anassrs 683 . . . . . . . . . . . 12 ((((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧𝐵) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧))
56 oveq2 6822 . . . . . . . . . . . . 13 ((𝑤 + 𝑧) = 𝑎 → (𝑢 + (𝑤 + 𝑧)) = (𝑢 + 𝑎))
57 id 22 . . . . . . . . . . . . 13 ((𝑤 + 𝑧) = 𝑎 → (𝑤 + 𝑧) = 𝑎)
5856, 57eqeq12d 2775 . . . . . . . . . . . 12 ((𝑤 + 𝑧) = 𝑎 → ((𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧) ↔ (𝑢 + 𝑎) = 𝑎))
5955, 58syl5ibcom 235 . . . . . . . . . . 11 ((((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧𝐵) → ((𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6059rexlimdva 3169 . . . . . . . . . 10 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑧𝐵 (𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6142, 60syl5bi 232 . . . . . . . . 9 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6261adantrl 754 . . . . . . . 8 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (∃𝑟𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎))
6339, 62mpd 15 . . . . . . 7 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (𝑢 + 𝑎) = 𝑎)
64 oveq2 6822 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑙 + 𝑥) = (𝑙 + 𝑎))
6564eqeq1d 2762 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑦))
6665rexbidv 3190 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦))
67 oveq1 6821 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (𝑥 + 𝑟) = (𝑎 + 𝑟))
6867eqeq1d 2762 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑦))
6968rexbidv 3190 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦))
7066, 69anbi12d 749 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦)))
71 eqeq2 2771 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → ((𝑙 + 𝑎) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑢))
7271rexbidv 3190 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ↔ ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
73 eqeq2 2771 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → ((𝑎 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑢))
7473rexbidv 3190 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦 ↔ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢))
7572, 74anbi12d 749 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑢 → ((∃𝑙𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑦) ↔ (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢)))
7670, 75rspc2va 3462 . . . . . . . . . . . . . . . 16 (((𝑎𝐵𝑢𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟𝐵 (𝑎 + 𝑟) = 𝑢))
7776simpld 477 . . . . . . . . . . . . . . 15 (((𝑎𝐵𝑢𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢)
7877ex 449 . . . . . . . . . . . . . 14 ((𝑎𝐵𝑢𝐵) → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
7978ancoms 468 . . . . . . . . . . . . 13 ((𝑢𝐵𝑎𝐵) → (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8079com12 32 . . . . . . . . . . . 12 (∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑢𝐵𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
81803ad2ant3 1130 . . . . . . . . . . 11 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑢𝐵𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢))
8281impl 651 . . . . . . . . . 10 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢)
83 oveq1 6821 . . . . . . . . . . . 12 (𝑙 = 𝑖 → (𝑙 + 𝑎) = (𝑖 + 𝑎))
8483eqeq1d 2762 . . . . . . . . . . 11 (𝑙 = 𝑖 → ((𝑙 + 𝑎) = 𝑢 ↔ (𝑖 + 𝑎) = 𝑢))
8584cbvrexv 3311 . . . . . . . . . 10 (∃𝑙𝐵 (𝑙 + 𝑎) = 𝑢 ↔ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8682, 85sylib 208 . . . . . . . . 9 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8786adantllr 757 . . . . . . . 8 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8887adantrr 755 . . . . . . 7 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)
8963, 88jca 555 . . . . . 6 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ (𝑎𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
9089expr 644 . . . . 5 (((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) ∧ 𝑎𝐵) → ((𝑢 + 𝑤) = 𝑤 → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9190ralrimdva 3107 . . . 4 ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) ∧ 𝑢𝐵) → ((𝑢 + 𝑤) = 𝑤 → ∀𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9291reximdva 3155 . . 3 (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → (∃𝑢𝐵 (𝑢 + 𝑤) = 𝑤 → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢)))
9328, 92mpd 15 . 2 (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤𝐵) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
943, 93exlimddv 2012 1 ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵 (∃𝑙𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢𝐵𝑎𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖𝐵 (𝑖 + 𝑎) = 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051  c0 4058  cfv 6049  (class class class)co 6814  Basecbs 16079  +gcplusg 16163  SGrpcsgrp 17504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-nul 4941
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817  df-sgrp 17505
This theorem is referenced by:  dfgrp3  17735
  Copyright terms: Public domain W3C validator