MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid3 Structured version   Visualization version   GIF version

Theorem dfid3 5455
Description: A stronger version of df-id 5453 that does not require 𝑥 and 𝑦 to be disjoint. This is not the "official" definition since our definition soundness check without this requirement would be much more complex. The proof can be instructive in showing how disjoint variable requirements may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.) (Revised by Mario Carneiro, 18-Nov-2016.) Use directly the definition df-id 5453 when sufficient, since the derivation of dfid3 5455 is nontrivial and uses auxiliary axioms ax-10 2139 to ax-13 2384. (New usage is discouraged.)
Assertion
Ref Expression
dfid3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}

Proof of Theorem dfid3
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-id 5453 . 2 I = {⟨𝑥, 𝑧⟩ ∣ 𝑥 = 𝑧}
2 equcom 2019 . . . . . . . . . . 11 (𝑥 = 𝑧𝑧 = 𝑥)
32anbi1ci 627 . . . . . . . . . 10 ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑧 = 𝑥𝑤 = ⟨𝑥, 𝑧⟩))
43exbii 1842 . . . . . . . . 9 (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑧(𝑧 = 𝑥𝑤 = ⟨𝑥, 𝑧⟩))
5 opeq2 4796 . . . . . . . . . . 11 (𝑧 = 𝑥 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝑥⟩)
65eqeq2d 2830 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑥, 𝑥⟩))
76equsexvw 2005 . . . . . . . . 9 (∃𝑧(𝑧 = 𝑥𝑤 = ⟨𝑥, 𝑧⟩) ↔ 𝑤 = ⟨𝑥, 𝑥⟩)
8 equid 2013 . . . . . . . . . 10 𝑥 = 𝑥
98biantru 532 . . . . . . . . 9 (𝑤 = ⟨𝑥, 𝑥⟩ ↔ (𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
104, 7, 93bitri 299 . . . . . . . 8 (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
1110exbii 1842 . . . . . . 7 (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
12 nfe1 2148 . . . . . . . 8 𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥)
131219.9 2198 . . . . . . 7 (∃𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ ∃𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
1411, 13bitr4i 280 . . . . . 6 (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥))
15 opeq2 4796 . . . . . . . . . . 11 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1615eqeq2d 2830 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑤 = ⟨𝑥, 𝑥⟩ ↔ 𝑤 = ⟨𝑥, 𝑦⟩))
17 equequ2 2027 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 = 𝑥𝑥 = 𝑦))
1816, 17anbi12d 632 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
1918sps 2177 . . . . . . . 8 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
2019drex1 2457 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
2120drex2 2458 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑥(𝑤 = ⟨𝑥, 𝑥⟩ ∧ 𝑥 = 𝑥) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
2214, 21syl5bb 285 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
23 nfnae 2450 . . . . . 6 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
24 nfnae 2450 . . . . . . 7 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
25 nfcvd 2976 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑤)
26 nfcvf2 3006 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
27 nfcvd 2976 . . . . . . . . . 10 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑧)
2826, 27nfopd 4812 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥, 𝑧⟩)
2925, 28nfeqd 2986 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑤 = ⟨𝑥, 𝑧⟩)
3026, 27nfeqd 2986 . . . . . . . 8 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦 𝑥 = 𝑧)
3129, 30nfand 1892 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧))
32 opeq2 4796 . . . . . . . . . 10 (𝑧 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝑦⟩)
3332eqeq2d 2830 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑤 = ⟨𝑥, 𝑧⟩ ↔ 𝑤 = ⟨𝑥, 𝑦⟩))
34 equequ2 2027 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑥 = 𝑧𝑥 = 𝑦))
3533, 34anbi12d 632 . . . . . . . 8 (𝑧 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
3635a1i 11 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ((𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦))))
3724, 31, 36cbvexd 2423 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
3823, 37exbid 2218 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)))
3922, 38pm2.61i 184 . . . 4 (∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧) ↔ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦))
4039abbii 2884 . . 3 {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧)} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)}
41 df-opab 5120 . . 3 {⟨𝑥, 𝑧⟩ ∣ 𝑥 = 𝑧} = {𝑤 ∣ ∃𝑥𝑧(𝑤 = ⟨𝑥, 𝑧⟩ ∧ 𝑥 = 𝑧)}
42 df-opab 5120 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝑥 = 𝑦)}
4340, 41, 423eqtr4i 2852 . 2 {⟨𝑥, 𝑧⟩ ∣ 𝑥 = 𝑧} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
441, 43eqtri 2842 1 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1529   = wceq 1531  wex 1774  {cab 2797  cop 4565  {copab 5119   I cid 5452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-13 2384  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-opab 5120  df-id 5453
This theorem is referenced by:  dfid2  5456
  Copyright terms: Public domain W3C validator