MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfimafn2 Structured version   Visualization version   GIF version

Theorem dfimafn2 6404
Description: Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
dfimafn2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfimafn2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfimafn 6403 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
2 iunab 4714 . . 3 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦}
31, 2syl6eqr 2808 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦})
4 df-sn 4318 . . . . 5 {(𝐹𝑥)} = {𝑦𝑦 = (𝐹𝑥)}
5 eqcom 2763 . . . . . 6 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
65abbii 2873 . . . . 5 {𝑦𝑦 = (𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
74, 6eqtri 2778 . . . 4 {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦}
87a1i 11 . . 3 (𝑥𝐴 → {(𝐹𝑥)} = {𝑦 ∣ (𝐹𝑥) = 𝑦})
98iuneq2i 4687 . 2 𝑥𝐴 {(𝐹𝑥)} = 𝑥𝐴 {𝑦 ∣ (𝐹𝑥) = 𝑦}
103, 9syl6eqr 2808 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1628  wcel 2135  {cab 2742  wrex 3047  wss 3711  {csn 4317   ciun 4668  dom cdm 5262  cima 5265  Fun wfun 6039  cfv 6045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pr 5051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-fv 6053
This theorem is referenced by:  uniiccdif  23542
  Copyright terms: Public domain W3C validator