![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiso3 | Structured version Visualization version GIF version |
Description: Alternate definition of an isomorphism of a category as a section in both directions. (Contributed by AV, 11-Apr-2017.) |
Ref | Expression |
---|---|
dfiso3.b | ⊢ 𝐵 = (Base‘𝐶) |
dfiso3.h | ⊢ 𝐻 = (Hom ‘𝐶) |
dfiso3.i | ⊢ 𝐼 = (Iso‘𝐶) |
dfiso3.s | ⊢ 𝑆 = (Sect‘𝐶) |
dfiso3.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
dfiso3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dfiso3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
dfiso3.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
dfiso3 | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiso3.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | dfiso3.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | dfiso3.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | dfiso3.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
5 | dfiso3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | dfiso3.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | dfiso3.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
8 | eqid 2651 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
9 | eqid 2651 | . . 3 ⊢ (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) = (〈𝑋, 𝑌〉(comp‘𝐶)𝑋) | |
10 | eqid 2651 | . . 3 ⊢ (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) = (〈𝑌, 𝑋〉(comp‘𝐶)𝑌) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | dfiso2 16479 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)))) |
12 | eqid 2651 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
13 | dfiso3.s | . . . . . 6 ⊢ 𝑆 = (Sect‘𝐶) | |
14 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝐶 ∈ Cat) |
15 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑌 ∈ 𝐵) |
16 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑋 ∈ 𝐵) |
17 | simpr 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝑔 ∈ (𝑌𝐻𝑋)) | |
18 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → 𝐹 ∈ (𝑋𝐻𝑌)) |
19 | 1, 2, 12, 8, 13, 14, 15, 16, 17, 18 | issect2 16461 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (𝑔(𝑌𝑆𝑋)𝐹 ↔ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))) |
20 | 1, 2, 12, 8, 13, 14, 16, 15, 18, 17 | issect2 16461 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (𝐹(𝑋𝑆𝑌)𝑔 ↔ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) |
21 | 19, 20 | anbi12d 747 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → ((𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔) ↔ ((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
22 | ancom 465 | . . . 4 ⊢ (((𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌) ∧ (𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌))) | |
23 | 21, 22 | syl6rbb 277 | . . 3 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝑌𝐻𝑋)) → (((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ (𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
24 | 23 | rexbidva 3078 | . 2 ⊢ (𝜑 → (∃𝑔 ∈ (𝑌𝐻𝑋)((𝑔(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋) ∧ (𝐹(〈𝑌, 𝑋〉(comp‘𝐶)𝑌)𝑔) = ((Id‘𝐶)‘𝑌)) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
25 | 11, 24 | bitrd 268 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ ∃𝑔 ∈ (𝑌𝐻𝑋)(𝑔(𝑌𝑆𝑋)𝐹 ∧ 𝐹(𝑋𝑆𝑌)𝑔))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 〈cop 4216 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Hom chom 15999 compcco 16000 Catccat 16372 Idccid 16373 Sectcsect 16451 Isociso 16453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-sect 16454 df-inv 16455 df-iso 16456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |