![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiun3g | Structured version Visualization version GIF version |
Description: Alternate definition of indexed union when 𝐵 is a set. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfiun3g | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiun2g 4584 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | eqid 2651 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | 2 | rnmpt 5403 | . . 3 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
4 | 3 | unieqi 4477 | . 2 ⊢ ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
5 | 1, 4 | syl6eqr 2703 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ∃wrex 2942 ∪ cuni 4468 ∪ ciun 4552 ↦ cmpt 4762 ran crn 5144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-cnv 5151 df-dm 5153 df-rn 5154 |
This theorem is referenced by: dfiun3 5412 iunon 7481 onoviun 7485 gruiun 9659 tgiun 20831 acunirnmpt2f 29589 locfinreflem 30035 carsgclctunlem2 30509 pmeasadd 30515 saliuncl 40860 salexct3 40878 salgensscntex 40880 meadjiun 41001 omeiunle 41052 ovolval5lem2 41188 |
Copyright terms: Public domain | W3C validator |