MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfod2 Structured version   Visualization version   GIF version

Theorem dfod2 18690
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
dfod2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dfod2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13340 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (0...((𝑂𝐴) − 1)) ∈ Fin)
2 odf1.1 . . . . . . . . . . . . 13 𝑋 = (Base‘𝐺)
3 odf1.3 . . . . . . . . . . . . 13 · = (.g𝐺)
42, 3mulgcl 18244 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
543expa 1114 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
65an32s 650 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
76adantlr 713 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
8 odf1.4 . . . . . . . . 9 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
97, 8fmptd 6877 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → 𝐹:ℤ⟶𝑋)
10 frn 6519 . . . . . . . 8 (𝐹:ℤ⟶𝑋 → ran 𝐹𝑋)
112fvexi 6683 . . . . . . . . 9 𝑋 ∈ V
1211ssex 5224 . . . . . . . 8 (ran 𝐹𝑋 → ran 𝐹 ∈ V)
139, 10, 123syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ran 𝐹 ∈ V)
14 elfzelz 12907 . . . . . . . . . . 11 (𝑦 ∈ (0...((𝑂𝐴) − 1)) → 𝑦 ∈ ℤ)
1514adantl 484 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 ∈ ℤ)
16 ovex 7188 . . . . . . . . . 10 (𝑦 · 𝐴) ∈ V
17 oveq1 7162 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
188, 17elrnmpt1s 5828 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑦 · 𝐴) ∈ V) → (𝑦 · 𝐴) ∈ ran 𝐹)
1915, 16, 18sylancl 588 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑦 · 𝐴) ∈ ran 𝐹)
2019ralrimiva 3182 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ∀𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹)
21 zmodfz 13260 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)))
2221ancoms 461 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)))
2322adantll 712 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)))
24 simpllr 774 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑂𝐴) ∈ ℕ)
25 simplr 767 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑥 ∈ ℤ)
2614adantl 484 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 ∈ ℤ)
27 moddvds 15617 . . . . . . . . . . . . . 14 (((𝑂𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
2824, 25, 26, 27syl3anc 1367 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
2926zred 12086 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 ∈ ℝ)
3024nnrpd 12428 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑂𝐴) ∈ ℝ+)
31 0z 11991 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
32 nnz 12003 . . . . . . . . . . . . . . . . . . . . 21 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℤ)
3332adantl 484 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
3433adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
35 elfzm11 12977 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < (𝑂𝐴))))
3631, 34, 35sylancr 589 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < (𝑂𝐴))))
3736biimpa 479 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < (𝑂𝐴)))
3837simp2d 1139 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 0 ≤ 𝑦)
3937simp3d 1140 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 < (𝑂𝐴))
40 modid 13263 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < (𝑂𝐴))) → (𝑦 mod (𝑂𝐴)) = 𝑦)
4129, 30, 38, 39, 40syl22anc 836 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑦 mod (𝑂𝐴)) = 𝑦)
4241eqeq2d 2832 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ (𝑥 mod (𝑂𝐴)) = 𝑦))
43 eqcom 2828 . . . . . . . . . . . . . 14 ((𝑥 mod (𝑂𝐴)) = 𝑦𝑦 = (𝑥 mod (𝑂𝐴)))
4442, 43syl6bb 289 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ 𝑦 = (𝑥 mod (𝑂𝐴))))
45 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝐺 ∈ Grp)
46 simp-4r 782 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝐴𝑋)
47 odf1.2 . . . . . . . . . . . . . . 15 𝑂 = (od‘𝐺)
48 eqid 2821 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
492, 47, 3, 48odcong 18676 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
5045, 46, 25, 26, 49syl112anc 1370 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
5128, 44, 503bitr3rd 312 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂𝐴))))
5251ralrimiva 3182 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∀𝑦 ∈ (0...((𝑂𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂𝐴))))
53 reu6i 3718 . . . . . . . . . . 11 (((𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)) ∧ ∀𝑦 ∈ (0...((𝑂𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂𝐴)))) → ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
5423, 52, 53syl2anc 586 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
5554ralrimiva 3182 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
56 ovex 7188 . . . . . . . . . . 11 (𝑥 · 𝐴) ∈ V
5756rgenw 3150 . . . . . . . . . 10 𝑥 ∈ ℤ (𝑥 · 𝐴) ∈ V
58 eqeq1 2825 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝐴) → (𝑧 = (𝑦 · 𝐴) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
5958reubidv 3389 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝐴) → (∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)))
608, 59ralrnmptw 6859 . . . . . . . . . 10 (∀𝑥 ∈ ℤ (𝑥 · 𝐴) ∈ V → (∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)))
6157, 60ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
6255, 61sylibr 236 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴))
63 eqid 2821 . . . . . . . . 9 (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)) = (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴))
6463f1ompt 6874 . . . . . . . 8 ((𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂𝐴) − 1))–1-1-onto→ran 𝐹 ↔ (∀𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹 ∧ ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴)))
6520, 62, 64sylanbrc 585 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂𝐴) − 1))–1-1-onto→ran 𝐹)
66 f1oen2g 8525 . . . . . . 7 (((0...((𝑂𝐴) − 1)) ∈ Fin ∧ ran 𝐹 ∈ V ∧ (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂𝐴) − 1))–1-1-onto→ran 𝐹) → (0...((𝑂𝐴) − 1)) ≈ ran 𝐹)
671, 13, 65, 66syl3anc 1367 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (0...((𝑂𝐴) − 1)) ≈ ran 𝐹)
68 enfi 8733 . . . . . 6 ((0...((𝑂𝐴) − 1)) ≈ ran 𝐹 → ((0...((𝑂𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin))
6967, 68syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ((0...((𝑂𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin))
701, 69mpbid 234 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ran 𝐹 ∈ Fin)
7170iftrued 4474 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0) = (♯‘ran 𝐹))
72 fz01en 12934 . . . . . 6 ((𝑂𝐴) ∈ ℤ → (0...((𝑂𝐴) − 1)) ≈ (1...(𝑂𝐴)))
73 ensym 8557 . . . . . 6 ((0...((𝑂𝐴) − 1)) ≈ (1...(𝑂𝐴)) → (1...(𝑂𝐴)) ≈ (0...((𝑂𝐴) − 1)))
7433, 72, 733syl 18 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (1...(𝑂𝐴)) ≈ (0...((𝑂𝐴) − 1)))
75 entr 8560 . . . . 5 (((1...(𝑂𝐴)) ≈ (0...((𝑂𝐴) − 1)) ∧ (0...((𝑂𝐴) − 1)) ≈ ran 𝐹) → (1...(𝑂𝐴)) ≈ ran 𝐹)
7674, 67, 75syl2anc 586 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (1...(𝑂𝐴)) ≈ ran 𝐹)
77 fzfid 13340 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (1...(𝑂𝐴)) ∈ Fin)
78 hashen 13706 . . . . 5 (((1...(𝑂𝐴)) ∈ Fin ∧ ran 𝐹 ∈ Fin) → ((♯‘(1...(𝑂𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂𝐴)) ≈ ran 𝐹))
7977, 70, 78syl2anc 586 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ((♯‘(1...(𝑂𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂𝐴)) ≈ ran 𝐹))
8076, 79mpbird 259 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(1...(𝑂𝐴))) = (♯‘ran 𝐹))
81 nnnn0 11903 . . . . 5 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
8281adantl 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
83 hashfz1 13705 . . . 4 ((𝑂𝐴) ∈ ℕ0 → (♯‘(1...(𝑂𝐴))) = (𝑂𝐴))
8482, 83syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(1...(𝑂𝐴))) = (𝑂𝐴))
8571, 80, 843eqtr2rd 2863 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
86 simp3 1134 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
872, 47, 3, 8odinf 18689 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ ran 𝐹 ∈ Fin)
8887iffalsed 4477 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0) = 0)
8986, 88eqtr4d 2859 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
90893expa 1114 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
912, 47odcl 18663 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
9291adantl 484 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
93 elnn0 11898 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
9492, 93sylib 220 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
9585, 90, 94mpjaodan 955 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wral 3138  ∃!wreu 3140  Vcvv 3494  wss 3935  ifcif 4466   class class class wbr 5065  cmpt 5145  ran crn 5555  wf 6350  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  cen 8505  Fincfn 8508  cr 10535  0cc0 10536  1c1 10537   < clt 10674  cle 10675  cmin 10869  cn 11637  0cn0 11896  cz 11980  +crp 12388  ...cfz 12891   mod cmo 13236  chash 13689  cdvds 15606  Basecbs 16482  0gc0g 16712  Grpcgrp 18102  .gcmg 18223  odcod 18651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-od 18655
This theorem is referenced by:  oddvds2  18692  cyggenod  19002  cyggenod2  19003  cycsubggenodd  19230
  Copyright terms: Public domain W3C validator