![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfom5b | Structured version Visualization version GIF version |
Description: A quantifier-free definition of ω that does not depend on ax-inf 8708. (Note: label was changed from dfom5 8720 to dfom5b 32325 to prevent naming conflict. NM, 12-Feb-2013.) (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
dfom5b | ⊢ ω = (On ∩ ∩ Limits ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3343 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | elint 4633 | . . . . 5 ⊢ (𝑥 ∈ ∩ Limits ↔ ∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦)) |
3 | vex 3343 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
4 | 3 | ellimits 32323 | . . . . . . 7 ⊢ (𝑦 ∈ Limits ↔ Lim 𝑦) |
5 | 4 | imbi1i 338 | . . . . . 6 ⊢ ((𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ (Lim 𝑦 → 𝑥 ∈ 𝑦)) |
6 | 5 | albii 1896 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ Limits → 𝑥 ∈ 𝑦) ↔ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) |
7 | 2, 6 | bitr2i 265 | . . . 4 ⊢ (∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦) ↔ 𝑥 ∈ ∩ Limits ) |
8 | 7 | anbi2i 732 | . . 3 ⊢ ((𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) |
9 | elom 7233 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦))) | |
10 | elin 3939 | . . 3 ⊢ (𝑥 ∈ (On ∩ ∩ Limits ) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ ∩ Limits )) | |
11 | 8, 9, 10 | 3bitr4i 292 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ ∩ Limits )) |
12 | 11 | eqriv 2757 | 1 ⊢ ω = (On ∩ ∩ Limits ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1630 = wceq 1632 ∈ wcel 2139 ∩ cin 3714 ∩ cint 4627 Oncon0 5884 Lim wlim 5885 ωcom 7230 Limits climits 32249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-symdif 3987 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ord 5887 df-on 5888 df-lim 5889 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fo 6055 df-fv 6057 df-om 7231 df-1st 7333 df-2nd 7334 df-txp 32267 df-bigcup 32271 df-fix 32272 df-limits 32273 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |