Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem6 Structured version   Visualization version   GIF version

Theorem dfon2lem6 31998
Description: Lemma for dfon2 32002. A transitive class of sets satisfying the new definition satisfies the new definition. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
dfon2lem6 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
Distinct variable group:   𝑥,𝑆,𝑦,𝑧

Proof of Theorem dfon2lem6
Dummy variables 𝑤 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssss 3844 . . . . . . . . . . . . . . . . 17 (𝑦𝑆𝑦𝑆)
2 ssralv 3807 . . . . . . . . . . . . . . . . 17 (𝑦𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)))
31, 2syl 17 . . . . . . . . . . . . . . . 16 (𝑦𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)))
43impcom 445 . . . . . . . . . . . . . . 15 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ 𝑦𝑆) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
54adantrr 755 . . . . . . . . . . . . . 14 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
65ad2ant2lr 801 . . . . . . . . . . . . 13 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥))
7 psseq2 3837 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
87anbi1d 743 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝑧𝑥 ∧ Tr 𝑧) ↔ (𝑧𝑤 ∧ Tr 𝑧)))
9 elequ2 2153 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
108, 9imbi12d 333 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1110albidv 1998 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1211rspccv 3446 . . . . . . . . . . . . 13 (∀𝑥𝑦𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (𝑤𝑦 → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
136, 12syl 17 . . . . . . . . . . . 12 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑤𝑦 → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤)))
1413imp 444 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤))
15 eldifi 3875 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (𝑆𝑦) → 𝑠𝑆)
16 psseq2 3837 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑠 → (𝑧𝑥𝑧𝑠))
1716anbi1d 743 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑠 → ((𝑧𝑥 ∧ Tr 𝑧) ↔ (𝑧𝑠 ∧ Tr 𝑧)))
18 elequ2 2153 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑠 → (𝑧𝑥𝑧𝑠))
1917, 18imbi12d 333 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑠 → (((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2019albidv 1998 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑠 → (∀𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ↔ ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2120rspcv 3445 . . . . . . . . . . . . . . . 16 (𝑠𝑆 → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
2215, 21syl 17 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠)))
23 psseq1 3836 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑡 → (𝑧𝑠𝑡𝑠))
24 treq 4910 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑡 → (Tr 𝑧 ↔ Tr 𝑡))
2523, 24anbi12d 749 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → ((𝑧𝑠 ∧ Tr 𝑧) ↔ (𝑡𝑠 ∧ Tr 𝑡)))
26 elequ1 2146 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑡 → (𝑧𝑠𝑡𝑠))
2725, 26imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑡 → (((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)))
2827cbvalv 2418 . . . . . . . . . . . . . . 15 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
2922, 28syl6ib 241 . . . . . . . . . . . . . 14 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)))
3029impcom 445 . . . . . . . . . . . . 13 ((∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) ∧ 𝑠 ∈ (𝑆𝑦)) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
3130ad2ant2l 799 . . . . . . . . . . . 12 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
3231adantr 472 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠))
33 vex 3343 . . . . . . . . . . . . 13 𝑤 ∈ V
34 vex 3343 . . . . . . . . . . . . 13 𝑠 ∈ V
3533, 34dfon2lem5 31997 . . . . . . . . . . . 12 ((∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤) ∧ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)) → (𝑤𝑠𝑤 = 𝑠𝑠𝑤))
36 3orrot 1077 . . . . . . . . . . . . . 14 ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) ↔ (𝑤 = 𝑠𝑠𝑤𝑤𝑠))
37 3orass 1075 . . . . . . . . . . . . . 14 ((𝑤 = 𝑠𝑠𝑤𝑤𝑠) ↔ (𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)))
3836, 37bitri 264 . . . . . . . . . . . . 13 ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) ↔ (𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)))
39 eleq1a 2834 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (𝑆𝑦) → (𝑤 = 𝑠𝑤 ∈ (𝑆𝑦)))
40 elndif 3877 . . . . . . . . . . . . . . . . . 18 (𝑤𝑦 → ¬ 𝑤 ∈ (𝑆𝑦))
4139, 40nsyli 155 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑤 = 𝑠))
4241imp 444 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ (𝑆𝑦) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
4342adantll 752 . . . . . . . . . . . . . . 15 ((((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦)) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
4443adantll 752 . . . . . . . . . . . . . 14 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ¬ 𝑤 = 𝑠)
45 orel1 396 . . . . . . . . . . . . . . 15 𝑤 = 𝑠 → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → (𝑠𝑤𝑤𝑠)))
46 trss 4913 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑦 → (𝑤𝑦𝑤𝑦))
47 eldifn 3876 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ (𝑆𝑦) → ¬ 𝑠𝑦)
48 ssel 3738 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤𝑦 → (𝑠𝑤𝑠𝑦))
4948con3d 148 . . . . . . . . . . . . . . . . . . . . 21 (𝑤𝑦 → (¬ 𝑠𝑦 → ¬ 𝑠𝑤))
5047, 49syl5com 31 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤))
5146, 50syl9 77 . . . . . . . . . . . . . . . . . . 19 (Tr 𝑦 → (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤)))
5251adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑤𝑦 → ¬ 𝑠𝑤)))
5352imp31 447 . . . . . . . . . . . . . . . . 17 ((((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦)) ∧ 𝑤𝑦) → ¬ 𝑠𝑤)
5453adantll 752 . . . . . . . . . . . . . . . 16 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ¬ 𝑠𝑤)
55 orel1 396 . . . . . . . . . . . . . . . 16 𝑠𝑤 → ((𝑠𝑤𝑤𝑠) → 𝑤𝑠))
5654, 55syl 17 . . . . . . . . . . . . . . 15 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑠𝑤𝑤𝑠) → 𝑤𝑠))
5745, 56syl9r 78 . . . . . . . . . . . . . 14 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → (¬ 𝑤 = 𝑠 → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → 𝑤𝑠)))
5844, 57mpd 15 . . . . . . . . . . . . 13 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑤 = 𝑠 ∨ (𝑠𝑤𝑤𝑠)) → 𝑤𝑠))
5938, 58syl5bi 232 . . . . . . . . . . . 12 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((𝑤𝑠𝑤 = 𝑠𝑠𝑤) → 𝑤𝑠))
6035, 59syl5 34 . . . . . . . . . . 11 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → ((∀𝑧((𝑧𝑤 ∧ Tr 𝑧) → 𝑧𝑤) ∧ ∀𝑡((𝑡𝑠 ∧ Tr 𝑡) → 𝑡𝑠)) → 𝑤𝑠))
6114, 32, 60mp2and 717 . . . . . . . . . 10 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) ∧ 𝑤𝑦) → 𝑤𝑠)
6261ex 449 . . . . . . . . 9 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑤𝑦𝑤𝑠))
6362ssrdv 3750 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → 𝑦𝑠)
64 dfpss2 3834 . . . . . . . . 9 (𝑦𝑠 ↔ (𝑦𝑠 ∧ ¬ 𝑦 = 𝑠))
65 psseq1 3836 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (𝑧𝑠𝑦𝑠))
66 treq 4910 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → (Tr 𝑧 ↔ Tr 𝑦))
6765, 66anbi12d 749 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → ((𝑧𝑠 ∧ Tr 𝑧) ↔ (𝑦𝑠 ∧ Tr 𝑦)))
68 elequ1 2146 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧𝑠𝑦𝑠))
6967, 68imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) ↔ ((𝑦𝑠 ∧ Tr 𝑦) → 𝑦𝑠)))
7069spv 2405 . . . . . . . . . . . . . . . 16 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → ((𝑦𝑠 ∧ Tr 𝑦) → 𝑦𝑠))
7170expd 451 . . . . . . . . . . . . . . 15 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → (𝑦𝑠 → (Tr 𝑦𝑦𝑠)))
7271com23 86 . . . . . . . . . . . . . 14 (∀𝑧((𝑧𝑠 ∧ Tr 𝑧) → 𝑧𝑠) → (Tr 𝑦 → (𝑦𝑠𝑦𝑠)))
7322, 72syl6 35 . . . . . . . . . . . . 13 (𝑠 ∈ (𝑆𝑦) → (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (Tr 𝑦 → (𝑦𝑠𝑦𝑠))))
7473com3l 89 . . . . . . . . . . . 12 (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → (Tr 𝑦 → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7574adantld 484 . . . . . . . . . . 11 (∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥) → ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7675adantl 473 . . . . . . . . . 10 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ((𝑦𝑆 ∧ Tr 𝑦) → (𝑠 ∈ (𝑆𝑦) → (𝑦𝑠𝑦𝑠))))
7776imp32 448 . . . . . . . . 9 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑦𝑠𝑦𝑠))
7864, 77syl5bir 233 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → ((𝑦𝑠 ∧ ¬ 𝑦 = 𝑠) → 𝑦𝑠))
7963, 78mpand 713 . . . . . . 7 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (¬ 𝑦 = 𝑠𝑦𝑠))
8079orrd 392 . . . . . 6 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ ((𝑦𝑆 ∧ Tr 𝑦) ∧ 𝑠 ∈ (𝑆𝑦))) → (𝑦 = 𝑠𝑦𝑠))
8180anassrs 683 . . . . 5 ((((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) ∧ 𝑠 ∈ (𝑆𝑦)) → (𝑦 = 𝑠𝑦𝑠))
8281ralrimiva 3104 . . . 4 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠))
83 pssdif 4088 . . . . . . 7 (𝑦𝑆 → (𝑆𝑦) ≠ ∅)
84 r19.2z 4204 . . . . . . . 8 (((𝑆𝑦) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠))
8584ex 449 . . . . . . 7 ((𝑆𝑦) ≠ ∅ → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
8683, 85syl 17 . . . . . 6 (𝑦𝑆 → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
8786ad2antrl 766 . . . . 5 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → ∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠)))
88 eleq1w 2822 . . . . . . . . . 10 (𝑦 = 𝑠 → (𝑦𝑆𝑠𝑆))
8915, 88syl5ibr 236 . . . . . . . . 9 (𝑦 = 𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆))
9089a1i 11 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑦 = 𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
91 trel 4911 . . . . . . . . . . 11 (Tr 𝑆 → ((𝑦𝑠𝑠𝑆) → 𝑦𝑆))
9291expd 451 . . . . . . . . . 10 (Tr 𝑆 → (𝑦𝑠 → (𝑠𝑆𝑦𝑆)))
9315, 92syl7 74 . . . . . . . . 9 (Tr 𝑆 → (𝑦𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9493ad2antrr 764 . . . . . . . 8 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑦𝑠 → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9590, 94jaod 394 . . . . . . 7 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → ((𝑦 = 𝑠𝑦𝑠) → (𝑠 ∈ (𝑆𝑦) → 𝑦𝑆)))
9695com23 86 . . . . . 6 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (𝑠 ∈ (𝑆𝑦) → ((𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆)))
9796rexlimdv 3168 . . . . 5 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∃𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆))
9887, 97syld 47 . . . 4 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → (∀𝑠 ∈ (𝑆𝑦)(𝑦 = 𝑠𝑦𝑠) → 𝑦𝑆))
9982, 98mpd 15 . . 3 (((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) ∧ (𝑦𝑆 ∧ Tr 𝑦)) → 𝑦𝑆)
10099ex 449 . 2 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
101100alrimiv 2004 1 ((Tr 𝑆 ∧ ∀𝑥𝑆𝑧((𝑧𝑥 ∧ Tr 𝑧) → 𝑧𝑥)) → ∀𝑦((𝑦𝑆 ∧ Tr 𝑦) → 𝑦𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1071  wal 1630  wcel 2139  wne 2932  wral 3050  wrex 3051  cdif 3712  wss 3715  wpss 3716  c0 4058  Tr wtr 4904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-pw 4304  df-sn 4322  df-pr 4324  df-uni 4589  df-iun 4674  df-tr 4905  df-suc 5890
This theorem is referenced by:  dfon2lem7  31999  dfon2lem8  32000
  Copyright terms: Public domain W3C validator